Metamath Proof Explorer


Theorem nmoubi

Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmoubi.1 𝑋 = ( BaseSet ‘ 𝑈 )
nmoubi.y 𝑌 = ( BaseSet ‘ 𝑊 )
nmoubi.l 𝐿 = ( normCV𝑈 )
nmoubi.m 𝑀 = ( normCV𝑊 )
nmoubi.3 𝑁 = ( 𝑈 normOpOLD 𝑊 )
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion nmoubi ( ( 𝑇 : 𝑋𝑌𝐴 ∈ ℝ* ) → ( ( 𝑁𝑇 ) ≤ 𝐴 ↔ ∀ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑥 ) ) ≤ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 nmoubi.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nmoubi.y 𝑌 = ( BaseSet ‘ 𝑊 )
3 nmoubi.l 𝐿 = ( normCV𝑈 )
4 nmoubi.m 𝑀 = ( normCV𝑊 )
5 nmoubi.3 𝑁 = ( 𝑈 normOpOLD 𝑊 )
6 nmoubi.u 𝑈 ∈ NrmCVec
7 nmoubi.w 𝑊 ∈ NrmCVec
8 1 2 3 4 5 nmooval ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋𝑌 ) → ( 𝑁𝑇 ) = sup ( { 𝑦 ∣ ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) } , ℝ* , < ) )
9 6 7 8 mp3an12 ( 𝑇 : 𝑋𝑌 → ( 𝑁𝑇 ) = sup ( { 𝑦 ∣ ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) } , ℝ* , < ) )
10 9 breq1d ( 𝑇 : 𝑋𝑌 → ( ( 𝑁𝑇 ) ≤ 𝐴 ↔ sup ( { 𝑦 ∣ ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) } , ℝ* , < ) ≤ 𝐴 ) )
11 10 adantr ( ( 𝑇 : 𝑋𝑌𝐴 ∈ ℝ* ) → ( ( 𝑁𝑇 ) ≤ 𝐴 ↔ sup ( { 𝑦 ∣ ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) } , ℝ* , < ) ≤ 𝐴 ) )
12 2 4 nmosetre ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋𝑌 ) → { 𝑦 ∣ ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) } ⊆ ℝ )
13 7 12 mpan ( 𝑇 : 𝑋𝑌 → { 𝑦 ∣ ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) } ⊆ ℝ )
14 ressxr ℝ ⊆ ℝ*
15 13 14 sstrdi ( 𝑇 : 𝑋𝑌 → { 𝑦 ∣ ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) } ⊆ ℝ* )
16 supxrleub ( ( { 𝑦 ∣ ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) } ⊆ ℝ*𝐴 ∈ ℝ* ) → ( sup ( { 𝑦 ∣ ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) } , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) } 𝑧𝐴 ) )
17 15 16 sylan ( ( 𝑇 : 𝑋𝑌𝐴 ∈ ℝ* ) → ( sup ( { 𝑦 ∣ ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) } , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) } 𝑧𝐴 ) )
18 11 17 bitrd ( ( 𝑇 : 𝑋𝑌𝐴 ∈ ℝ* ) → ( ( 𝑁𝑇 ) ≤ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) } 𝑧𝐴 ) )
19 eqeq1 ( 𝑦 = 𝑧 → ( 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ↔ 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) )
20 19 anbi2d ( 𝑦 = 𝑧 → ( ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) ↔ ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) ) )
21 20 rexbidv ( 𝑦 = 𝑧 → ( ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) ↔ ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) ) )
22 21 ralab ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) } 𝑧𝐴 ↔ ∀ 𝑧 ( ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) → 𝑧𝐴 ) )
23 ralcom4 ( ∀ 𝑥𝑋𝑧 ( ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) → 𝑧𝐴 ) ↔ ∀ 𝑧𝑥𝑋 ( ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) → 𝑧𝐴 ) )
24 ancomst ( ( ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) → 𝑧𝐴 ) ↔ ( ( 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ∧ ( 𝐿𝑥 ) ≤ 1 ) → 𝑧𝐴 ) )
25 impexp ( ( ( 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ∧ ( 𝐿𝑥 ) ≤ 1 ) → 𝑧𝐴 ) ↔ ( 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) → ( ( 𝐿𝑥 ) ≤ 1 → 𝑧𝐴 ) ) )
26 24 25 bitri ( ( ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) → 𝑧𝐴 ) ↔ ( 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) → ( ( 𝐿𝑥 ) ≤ 1 → 𝑧𝐴 ) ) )
27 26 albii ( ∀ 𝑧 ( ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) → 𝑧𝐴 ) ↔ ∀ 𝑧 ( 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) → ( ( 𝐿𝑥 ) ≤ 1 → 𝑧𝐴 ) ) )
28 fvex ( 𝑀 ‘ ( 𝑇𝑥 ) ) ∈ V
29 breq1 ( 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) → ( 𝑧𝐴 ↔ ( 𝑀 ‘ ( 𝑇𝑥 ) ) ≤ 𝐴 ) )
30 29 imbi2d ( 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) → ( ( ( 𝐿𝑥 ) ≤ 1 → 𝑧𝐴 ) ↔ ( ( 𝐿𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑥 ) ) ≤ 𝐴 ) ) )
31 28 30 ceqsalv ( ∀ 𝑧 ( 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) → ( ( 𝐿𝑥 ) ≤ 1 → 𝑧𝐴 ) ) ↔ ( ( 𝐿𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑥 ) ) ≤ 𝐴 ) )
32 27 31 bitri ( ∀ 𝑧 ( ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) → 𝑧𝐴 ) ↔ ( ( 𝐿𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑥 ) ) ≤ 𝐴 ) )
33 32 ralbii ( ∀ 𝑥𝑋𝑧 ( ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) → 𝑧𝐴 ) ↔ ∀ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑥 ) ) ≤ 𝐴 ) )
34 r19.23v ( ∀ 𝑥𝑋 ( ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) → 𝑧𝐴 ) ↔ ( ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) → 𝑧𝐴 ) )
35 34 albii ( ∀ 𝑧𝑥𝑋 ( ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) → 𝑧𝐴 ) ↔ ∀ 𝑧 ( ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) → 𝑧𝐴 ) )
36 23 33 35 3bitr3i ( ∀ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑥 ) ) ≤ 𝐴 ) ↔ ∀ 𝑧 ( ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) → 𝑧𝐴 ) )
37 22 36 bitr4i ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇𝑥 ) ) ) } 𝑧𝐴 ↔ ∀ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑥 ) ) ≤ 𝐴 ) )
38 18 37 bitrdi ( ( 𝑇 : 𝑋𝑌𝐴 ∈ ℝ* ) → ( ( 𝑁𝑇 ) ≤ 𝐴 ↔ ∀ 𝑥𝑋 ( ( 𝐿𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑥 ) ) ≤ 𝐴 ) ) )