Step |
Hyp |
Ref |
Expression |
1 |
|
nmoubi.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nmoubi.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
3 |
|
nmoubi.l |
⊢ 𝐿 = ( normCV ‘ 𝑈 ) |
4 |
|
nmoubi.m |
⊢ 𝑀 = ( normCV ‘ 𝑊 ) |
5 |
|
nmoubi.3 |
⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) |
6 |
|
nmoubi.u |
⊢ 𝑈 ∈ NrmCVec |
7 |
|
nmoubi.w |
⊢ 𝑊 ∈ NrmCVec |
8 |
1 2 3 4 5
|
nmooval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ) |
9 |
6 7 8
|
mp3an12 |
⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ) |
10 |
9
|
breq1d |
⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) ≤ 𝐴 ↔ sup ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ≤ 𝐴 ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑁 ‘ 𝑇 ) ≤ 𝐴 ↔ sup ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ≤ 𝐴 ) ) |
12 |
2 4
|
nmosetre |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ⊆ ℝ ) |
13 |
7 12
|
mpan |
⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ⊆ ℝ ) |
14 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
15 |
13 14
|
sstrdi |
⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ⊆ ℝ* ) |
16 |
|
supxrleub |
⊢ ( ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ⊆ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( sup ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧 ≤ 𝐴 ) ) |
17 |
15 16
|
sylan |
⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ* ) → ( sup ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧 ≤ 𝐴 ) ) |
18 |
11 17
|
bitrd |
⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑁 ‘ 𝑇 ) ≤ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧 ≤ 𝐴 ) ) |
19 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
20 |
19
|
anbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ↔ ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
21 |
20
|
rexbidv |
⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
22 |
21
|
ralab |
⊢ ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧 ≤ 𝐴 ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ) |
23 |
|
ralcom4 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑧 ∀ 𝑥 ∈ 𝑋 ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ) |
24 |
|
ancomst |
⊢ ( ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ↔ ( ( 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 1 ) → 𝑧 ≤ 𝐴 ) ) |
25 |
|
impexp |
⊢ ( ( ( 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 1 ) → 𝑧 ≤ 𝐴 ) ↔ ( 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → 𝑧 ≤ 𝐴 ) ) ) |
26 |
24 25
|
bitri |
⊢ ( ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ↔ ( 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → 𝑧 ≤ 𝐴 ) ) ) |
27 |
26
|
albii |
⊢ ( ∀ 𝑧 ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑧 ( 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → 𝑧 ≤ 𝐴 ) ) ) |
28 |
|
fvex |
⊢ ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ V |
29 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( 𝑧 ≤ 𝐴 ↔ ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
30 |
29
|
imbi2d |
⊢ ( 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → 𝑧 ≤ 𝐴 ) ↔ ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
31 |
28 30
|
ceqsalv |
⊢ ( ∀ 𝑧 ( 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → 𝑧 ≤ 𝐴 ) ) ↔ ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
32 |
27 31
|
bitri |
⊢ ( ∀ 𝑧 ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ↔ ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
33 |
32
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑧 ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
34 |
|
r19.23v |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ↔ ( ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ) |
35 |
34
|
albii |
⊢ ( ∀ 𝑧 ∀ 𝑥 ∈ 𝑋 ( ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ) |
36 |
23 33 35
|
3bitr3i |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑧 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑧 ≤ 𝐴 ) ) |
37 |
22 36
|
bitr4i |
⊢ ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧 ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
38 |
18 37
|
bitrdi |
⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑁 ‘ 𝑇 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐿 ‘ 𝑥 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |