| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoubi.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nmoubi.y | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 3 |  | nmoubi.l | ⊢ 𝐿  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | nmoubi.m | ⊢ 𝑀  =  ( normCV ‘ 𝑊 ) | 
						
							| 5 |  | nmoubi.3 | ⊢ 𝑁  =  ( 𝑈  normOpOLD  𝑊 ) | 
						
							| 6 |  | nmoubi.u | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 7 |  | nmoubi.w | ⊢ 𝑊  ∈  NrmCVec | 
						
							| 8 | 1 2 3 4 5 | nmooval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  ( 𝑁 ‘ 𝑇 )  =  sup ( { 𝑦  ∣  ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 9 | 6 7 8 | mp3an12 | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( 𝑁 ‘ 𝑇 )  =  sup ( { 𝑦  ∣  ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 10 | 9 | breq1d | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( ( 𝑁 ‘ 𝑇 )  ≤  𝐴  ↔  sup ( { 𝑦  ∣  ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ,  ℝ* ,   <  )  ≤  𝐴 ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝐴  ∈  ℝ* )  →  ( ( 𝑁 ‘ 𝑇 )  ≤  𝐴  ↔  sup ( { 𝑦  ∣  ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ,  ℝ* ,   <  )  ≤  𝐴 ) ) | 
						
							| 12 | 2 4 | nmosetre | ⊢ ( ( 𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  { 𝑦  ∣  ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) }  ⊆  ℝ ) | 
						
							| 13 | 7 12 | mpan | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  { 𝑦  ∣  ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) }  ⊆  ℝ ) | 
						
							| 14 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 15 | 13 14 | sstrdi | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  { 𝑦  ∣  ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) }  ⊆  ℝ* ) | 
						
							| 16 |  | supxrleub | ⊢ ( ( { 𝑦  ∣  ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) }  ⊆  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( sup ( { 𝑦  ∣  ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ,  ℝ* ,   <  )  ≤  𝐴  ↔  ∀ 𝑧  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧  ≤  𝐴 ) ) | 
						
							| 17 | 15 16 | sylan | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝐴  ∈  ℝ* )  →  ( sup ( { 𝑦  ∣  ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ,  ℝ* ,   <  )  ≤  𝐴  ↔  ∀ 𝑧  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧  ≤  𝐴 ) ) | 
						
							| 18 | 11 17 | bitrd | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝐴  ∈  ℝ* )  →  ( ( 𝑁 ‘ 𝑇 )  ≤  𝐴  ↔  ∀ 𝑧  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧  ≤  𝐴 ) ) | 
						
							| 19 |  | eqeq1 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  ↔  𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) | 
						
							| 20 | 19 | anbi2d | ⊢ ( 𝑦  =  𝑧  →  ( ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) )  ↔  ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) | 
						
							| 21 | 20 | rexbidv | ⊢ ( 𝑦  =  𝑧  →  ( ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) )  ↔  ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) | 
						
							| 22 | 21 | ralab | ⊢ ( ∀ 𝑧  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧  ≤  𝐴  ↔  ∀ 𝑧 ( ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) )  →  𝑧  ≤  𝐴 ) ) | 
						
							| 23 |  | ralcom4 | ⊢ ( ∀ 𝑥  ∈  𝑋 ∀ 𝑧 ( ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) )  →  𝑧  ≤  𝐴 )  ↔  ∀ 𝑧 ∀ 𝑥  ∈  𝑋 ( ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) )  →  𝑧  ≤  𝐴 ) ) | 
						
							| 24 |  | ancomst | ⊢ ( ( ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) )  →  𝑧  ≤  𝐴 )  ↔  ( ( 𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( 𝐿 ‘ 𝑥 )  ≤  1 )  →  𝑧  ≤  𝐴 ) ) | 
						
							| 25 |  | impexp | ⊢ ( ( ( 𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  ∧  ( 𝐿 ‘ 𝑥 )  ≤  1 )  →  𝑧  ≤  𝐴 )  ↔  ( 𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  →  ( ( 𝐿 ‘ 𝑥 )  ≤  1  →  𝑧  ≤  𝐴 ) ) ) | 
						
							| 26 | 24 25 | bitri | ⊢ ( ( ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) )  →  𝑧  ≤  𝐴 )  ↔  ( 𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  →  ( ( 𝐿 ‘ 𝑥 )  ≤  1  →  𝑧  ≤  𝐴 ) ) ) | 
						
							| 27 | 26 | albii | ⊢ ( ∀ 𝑧 ( ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) )  →  𝑧  ≤  𝐴 )  ↔  ∀ 𝑧 ( 𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  →  ( ( 𝐿 ‘ 𝑥 )  ≤  1  →  𝑧  ≤  𝐴 ) ) ) | 
						
							| 28 |  | fvex | ⊢ ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  ∈  V | 
						
							| 29 |  | breq1 | ⊢ ( 𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  →  ( 𝑧  ≤  𝐴  ↔  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  𝐴 ) ) | 
						
							| 30 | 29 | imbi2d | ⊢ ( 𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  →  ( ( ( 𝐿 ‘ 𝑥 )  ≤  1  →  𝑧  ≤  𝐴 )  ↔  ( ( 𝐿 ‘ 𝑥 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  𝐴 ) ) ) | 
						
							| 31 | 28 30 | ceqsalv | ⊢ ( ∀ 𝑧 ( 𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  →  ( ( 𝐿 ‘ 𝑥 )  ≤  1  →  𝑧  ≤  𝐴 ) )  ↔  ( ( 𝐿 ‘ 𝑥 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  𝐴 ) ) | 
						
							| 32 | 27 31 | bitri | ⊢ ( ∀ 𝑧 ( ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) )  →  𝑧  ≤  𝐴 )  ↔  ( ( 𝐿 ‘ 𝑥 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  𝐴 ) ) | 
						
							| 33 | 32 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝑋 ∀ 𝑧 ( ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) )  →  𝑧  ≤  𝐴 )  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  𝐴 ) ) | 
						
							| 34 |  | r19.23v | ⊢ ( ∀ 𝑥  ∈  𝑋 ( ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) )  →  𝑧  ≤  𝐴 )  ↔  ( ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) )  →  𝑧  ≤  𝐴 ) ) | 
						
							| 35 | 34 | albii | ⊢ ( ∀ 𝑧 ∀ 𝑥  ∈  𝑋 ( ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) )  →  𝑧  ≤  𝐴 )  ↔  ∀ 𝑧 ( ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) )  →  𝑧  ≤  𝐴 ) ) | 
						
							| 36 | 23 33 35 | 3bitr3i | ⊢ ( ∀ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  𝐴 )  ↔  ∀ 𝑧 ( ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑧  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) )  →  𝑧  ≤  𝐴 ) ) | 
						
							| 37 | 22 36 | bitr4i | ⊢ ( ∀ 𝑧  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  ∧  𝑦  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧  ≤  𝐴  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  𝐴 ) ) | 
						
							| 38 | 18 37 | bitrdi | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝐴  ∈  ℝ* )  →  ( ( 𝑁 ‘ 𝑇 )  ≤  𝐴  ↔  ∀ 𝑥  ∈  𝑋 ( ( 𝐿 ‘ 𝑥 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  𝐴 ) ) ) |