| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoubi.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nmoubi.y | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 3 |  | nmoubi.l | ⊢ 𝐿  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | nmoubi.m | ⊢ 𝑀  =  ( normCV ‘ 𝑊 ) | 
						
							| 5 |  | nmoubi.3 | ⊢ 𝑁  =  ( 𝑈  normOpOLD  𝑊 ) | 
						
							| 6 |  | nmoubi.u | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 7 |  | nmoubi.w | ⊢ 𝑊  ∈  NrmCVec | 
						
							| 8 | 1 2 3 4 5 6 7 | nmobndi | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  ↔  ∃ 𝑟  ∈  ℝ ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑟 ) ) ) | 
						
							| 9 | 1 2 5 | nmorepnf | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  ↔  ( 𝑁 ‘ 𝑇 )  ≠  +∞ ) ) | 
						
							| 10 | 6 7 9 | mp3an12 | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  ↔  ( 𝑁 ‘ 𝑇 )  ≠  +∞ ) ) | 
						
							| 11 |  | ffvelcdm | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝑦  ∈  𝑋 )  →  ( 𝑇 ‘ 𝑦 )  ∈  𝑌 ) | 
						
							| 12 | 2 4 | nvcl | ⊢ ( ( 𝑊  ∈  NrmCVec  ∧  ( 𝑇 ‘ 𝑦 )  ∈  𝑌 )  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 13 | 7 11 12 | sylancr | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝑦  ∈  𝑋 )  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 14 |  | lenlt | ⊢ ( ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ∈  ℝ  ∧  𝑟  ∈  ℝ )  →  ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑟  ↔  ¬  𝑟  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | 
						
							| 15 | 13 14 | sylan | ⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝑦  ∈  𝑋 )  ∧  𝑟  ∈  ℝ )  →  ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑟  ↔  ¬  𝑟  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | 
						
							| 16 | 15 | an32s | ⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝑟  ∈  ℝ )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑟  ↔  ¬  𝑟  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | 
						
							| 17 | 16 | imbi2d | ⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝑟  ∈  ℝ )  ∧  𝑦  ∈  𝑋 )  →  ( ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑟 )  ↔  ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ¬  𝑟  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) | 
						
							| 18 |  | imnan | ⊢ ( ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ¬  𝑟  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) )  ↔  ¬  ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑟  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | 
						
							| 19 | 17 18 | bitrdi | ⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝑟  ∈  ℝ )  ∧  𝑦  ∈  𝑋 )  →  ( ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑟 )  ↔  ¬  ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑟  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) | 
						
							| 20 | 19 | ralbidva | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝑟  ∈  ℝ )  →  ( ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑟 )  ↔  ∀ 𝑦  ∈  𝑋 ¬  ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑟  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) | 
						
							| 21 |  | ralnex | ⊢ ( ∀ 𝑦  ∈  𝑋 ¬  ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑟  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) )  ↔  ¬  ∃ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑟  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | 
						
							| 22 | 20 21 | bitrdi | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝑟  ∈  ℝ )  →  ( ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑟 )  ↔  ¬  ∃ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑟  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) | 
						
							| 23 | 22 | rexbidva | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( ∃ 𝑟  ∈  ℝ ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑟 )  ↔  ∃ 𝑟  ∈  ℝ ¬  ∃ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑟  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) | 
						
							| 24 |  | rexnal | ⊢ ( ∃ 𝑟  ∈  ℝ ¬  ∃ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑟  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) )  ↔  ¬  ∀ 𝑟  ∈  ℝ ∃ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑟  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | 
						
							| 25 | 23 24 | bitrdi | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( ∃ 𝑟  ∈  ℝ ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑟 )  ↔  ¬  ∀ 𝑟  ∈  ℝ ∃ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑟  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) | 
						
							| 26 | 8 10 25 | 3bitr3d | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( ( 𝑁 ‘ 𝑇 )  ≠  +∞  ↔  ¬  ∀ 𝑟  ∈  ℝ ∃ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑟  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) | 
						
							| 27 | 26 | necon4abid | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( ( 𝑁 ‘ 𝑇 )  =  +∞  ↔  ∀ 𝑟  ∈  ℝ ∃ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  ∧  𝑟  <  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |