Step |
Hyp |
Ref |
Expression |
1 |
|
nmoubi.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nmoubi.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
3 |
|
nmoubi.l |
⊢ 𝐿 = ( normCV ‘ 𝑈 ) |
4 |
|
nmoubi.m |
⊢ 𝑀 = ( normCV ‘ 𝑊 ) |
5 |
|
nmoubi.3 |
⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) |
6 |
|
nmoubi.u |
⊢ 𝑈 ∈ NrmCVec |
7 |
|
nmoubi.w |
⊢ 𝑊 ∈ NrmCVec |
8 |
1 2 3 4 5 6 7
|
nmobndi |
⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ) ) |
9 |
1 2 5
|
nmorepnf |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝑇 ) ≠ +∞ ) ) |
10 |
6 7 9
|
mp3an12 |
⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝑇 ) ≠ +∞ ) ) |
11 |
|
ffvelrn |
⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑦 ) ∈ 𝑌 ) |
12 |
2 4
|
nvcl |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑦 ) ∈ 𝑌 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
13 |
7 11 12
|
sylancr |
⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
14 |
|
lenlt |
⊢ ( ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ↔ ¬ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
15 |
13 14
|
sylan |
⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑟 ∈ ℝ ) → ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ↔ ¬ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
16 |
15
|
an32s |
⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑟 ∈ ℝ ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ↔ ¬ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
17 |
16
|
imbi2d |
⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑟 ∈ ℝ ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ↔ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ¬ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
18 |
|
imnan |
⊢ ( ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ¬ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
19 |
17 18
|
bitrdi |
⊢ ( ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑟 ∈ ℝ ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ↔ ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
20 |
19
|
ralbidva |
⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑟 ∈ ℝ ) → ( ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ↔ ∀ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
21 |
|
ralnex |
⊢ ( ∀ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ¬ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
22 |
20 21
|
bitrdi |
⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑟 ∈ ℝ ) → ( ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ↔ ¬ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
23 |
22
|
rexbidva |
⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ↔ ∃ 𝑟 ∈ ℝ ¬ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
24 |
|
rexnal |
⊢ ( ∃ 𝑟 ∈ ℝ ¬ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ¬ ∀ 𝑟 ∈ ℝ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
25 |
23 24
|
bitrdi |
⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ↔ ¬ ∀ 𝑟 ∈ ℝ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
26 |
8 10 25
|
3bitr3d |
⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) ≠ +∞ ↔ ¬ ∀ 𝑟 ∈ ℝ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
27 |
26
|
necon4abid |
⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) = +∞ ↔ ∀ 𝑟 ∈ ℝ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑟 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |