Step |
Hyp |
Ref |
Expression |
1 |
|
nmofval.1 |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
2 |
|
nmofval.2 |
⊢ 𝑉 = ( Base ‘ 𝑆 ) |
3 |
|
nmofval.3 |
⊢ 𝐿 = ( norm ‘ 𝑆 ) |
4 |
|
nmofval.4 |
⊢ 𝑀 = ( norm ‘ 𝑇 ) |
5 |
1 2 3 4
|
nmofval |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 𝑁 = ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ) |
6 |
5
|
fveq1d |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝑁 ‘ 𝐹 ) = ( ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ‘ 𝐹 ) ) |
7 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝑓 = 𝐹 → ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
9 |
8
|
breq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ↔ ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ) ) |
11 |
10
|
rabbidv |
⊢ ( 𝑓 = 𝐹 → { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } = { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } ) |
12 |
11
|
infeq1d |
⊢ ( 𝑓 = 𝐹 → inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) |
13 |
|
eqid |
⊢ ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) = ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) |
14 |
|
xrltso |
⊢ < Or ℝ* |
15 |
14
|
infex |
⊢ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ∈ V |
16 |
12 13 15
|
fvmpt |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ‘ 𝐹 ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) |
17 |
6 16
|
sylan9eq |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) |
18 |
17
|
3impa |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) |