| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmofval.1 | ⊢ 𝑁  =  ( 𝑆  normOp  𝑇 ) | 
						
							| 2 |  | nmofval.2 | ⊢ 𝑉  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | nmofval.3 | ⊢ 𝐿  =  ( norm ‘ 𝑆 ) | 
						
							| 4 |  | nmofval.4 | ⊢ 𝑀  =  ( norm ‘ 𝑇 ) | 
						
							| 5 | 1 2 3 4 | nmofval | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  𝑁  =  ( 𝑓  ∈  ( 𝑆  GrpHom  𝑇 )  ↦  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) ) | 
						
							| 6 | 5 | fveq1d | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  ( 𝑁 ‘ 𝐹 )  =  ( ( 𝑓  ∈  ( 𝑆  GrpHom  𝑇 )  ↦  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) ‘ 𝐹 ) ) | 
						
							| 7 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑓  =  𝐹  →  ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) )  =  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 9 | 8 | breq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) )  ↔  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) ) ) | 
						
							| 10 | 9 | ralbidv | ⊢ ( 𝑓  =  𝐹  →  ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) )  ↔  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) ) ) | 
						
							| 11 | 10 | rabbidv | ⊢ ( 𝑓  =  𝐹  →  { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) }  =  { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ) | 
						
							| 12 | 11 | infeq1d | ⊢ ( 𝑓  =  𝐹  →  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  )  =  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 13 |  | eqid | ⊢ ( 𝑓  ∈  ( 𝑆  GrpHom  𝑇 )  ↦  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) )  =  ( 𝑓  ∈  ( 𝑆  GrpHom  𝑇 )  ↦  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 14 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 15 | 14 | infex | ⊢ inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  )  ∈  V | 
						
							| 16 | 12 13 15 | fvmpt | ⊢ ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  →  ( ( 𝑓  ∈  ( 𝑆  GrpHom  𝑇 )  ↦  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) ‘ 𝐹 )  =  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 17 | 6 16 | sylan9eq | ⊢ ( ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( 𝑁 ‘ 𝐹 )  =  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 18 | 17 | 3impa | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( 𝑁 ‘ 𝐹 )  =  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) |