Step |
Hyp |
Ref |
Expression |
1 |
|
nmoxr.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nmoxr.2 |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
3 |
|
nmoxr.3 |
⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) |
4 |
|
eqid |
⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) |
5 |
|
eqid |
⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) |
6 |
1 2 4 5 3
|
nmooval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
7 |
2 5
|
nmosetre |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ ) |
8 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
9 |
7 8
|
sstrdi |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ* ) |
10 |
|
supxrcl |
⊢ ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ* → sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ∈ ℝ* ) |
11 |
9 10
|
syl |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ∈ ℝ* ) |
12 |
11
|
3adant1 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ∈ ℝ* ) |
13 |
6 12
|
eqeltrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ) |