| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoxr.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nmoxr.2 | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 3 |  | nmoxr.3 | ⊢ 𝑁  =  ( 𝑈  normOpOLD  𝑊 ) | 
						
							| 4 |  | eqid | ⊢ ( normCV ‘ 𝑈 )  =  ( normCV ‘ 𝑈 ) | 
						
							| 5 |  | eqid | ⊢ ( normCV ‘ 𝑊 )  =  ( normCV ‘ 𝑊 ) | 
						
							| 6 | 1 2 4 5 3 | nmooval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  ( 𝑁 ‘ 𝑇 )  =  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 7 | 2 5 | nmosetre | ⊢ ( ( 𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) }  ⊆  ℝ ) | 
						
							| 8 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 9 | 7 8 | sstrdi | ⊢ ( ( 𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) }  ⊆  ℝ* ) | 
						
							| 10 |  | supxrcl | ⊢ ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) }  ⊆  ℝ*  →  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 12 | 11 | 3adant1 | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 13 | 6 12 | eqeltrd | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  ( 𝑁 ‘ 𝑇 )  ∈  ℝ* ) |