Step |
Hyp |
Ref |
Expression |
1 |
|
nmpar.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
nmpar.p |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
nmpar.m |
⊢ − = ( -g ‘ 𝑊 ) |
4 |
|
nmpar.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
5 |
|
nmpar.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
6 |
|
nmpar.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
7 |
|
nmpar.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
8 |
|
nmpar.1 |
⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) |
9 |
|
nmpar.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
10 |
|
nmpar.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
11 |
5 1 2 8 9 10 9 10
|
cph2di |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) |
12 |
5 1 3 8 9 10 9 10
|
cph2subdi |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) , ( 𝐴 − 𝐵 ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) − ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) |
13 |
11 12
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) + ( ( 𝐴 − 𝐵 ) , ( 𝐴 − 𝐵 ) ) ) = ( ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) + ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) − ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) ) |
14 |
|
cphclm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |
15 |
8 14
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
16 |
6 7
|
clmsscn |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝐾 ⊆ ℂ ) |
18 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
19 |
8 18
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
20 |
6 5 1 7
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 𝐴 ) ∈ 𝐾 ) |
21 |
19 9 9 20
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , 𝐴 ) ∈ 𝐾 ) |
22 |
6 5 1 7
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐵 , 𝐵 ) ∈ 𝐾 ) |
23 |
19 10 10 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 , 𝐵 ) ∈ 𝐾 ) |
24 |
6 7
|
clmacl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 , 𝐴 ) ∈ 𝐾 ∧ ( 𝐵 , 𝐵 ) ∈ 𝐾 ) → ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ∈ 𝐾 ) |
25 |
15 21 23 24
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ∈ 𝐾 ) |
26 |
17 25
|
sseldd |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ∈ ℂ ) |
27 |
6 5 1 7
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ 𝐾 ) |
28 |
19 9 10 27
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , 𝐵 ) ∈ 𝐾 ) |
29 |
6 5 1 7
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐵 , 𝐴 ) ∈ 𝐾 ) |
30 |
19 10 9 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 , 𝐴 ) ∈ 𝐾 ) |
31 |
6 7
|
clmacl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 , 𝐵 ) ∈ 𝐾 ∧ ( 𝐵 , 𝐴 ) ∈ 𝐾 ) → ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ∈ 𝐾 ) |
32 |
15 28 30 31
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ∈ 𝐾 ) |
33 |
17 32
|
sseldd |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ∈ ℂ ) |
34 |
26 33 26
|
ppncand |
⊢ ( 𝜑 → ( ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) + ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) − ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) ) |
35 |
13 34
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) + ( ( 𝐴 − 𝐵 ) , ( 𝐴 − 𝐵 ) ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) ) |
36 |
|
cphlmod |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod ) |
37 |
8 36
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
38 |
1 2
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 + 𝐵 ) ∈ 𝑉 ) |
39 |
37 9 10 38
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ 𝑉 ) |
40 |
1 5 4
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 + 𝐵 ) ∈ 𝑉 ) → ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) ) |
41 |
8 39 40
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) ) |
42 |
1 3
|
lmodvsubcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) ∈ 𝑉 ) |
43 |
37 9 10 42
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ 𝑉 ) |
44 |
1 5 4
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 − 𝐵 ) ∈ 𝑉 ) → ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 − 𝐵 ) , ( 𝐴 − 𝐵 ) ) ) |
45 |
8 43 44
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 − 𝐵 ) , ( 𝐴 − 𝐵 ) ) ) |
46 |
41 45
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) + ( ( 𝐴 − 𝐵 ) , ( 𝐴 − 𝐵 ) ) ) ) |
47 |
1 5 4
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
48 |
8 9 47
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
49 |
1 5 4
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 , 𝐵 ) ) |
50 |
8 10 49
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 , 𝐵 ) ) |
51 |
48 50
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) |
52 |
51
|
oveq2d |
⊢ ( 𝜑 → ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) = ( 2 · ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) ) |
53 |
26
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) ) |
54 |
52 53
|
eqtrd |
⊢ ( 𝜑 → ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) ) |
55 |
35 46 54
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |