| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmpropd.1 | ⊢ ( 𝜑  →  ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐿 ) ) | 
						
							| 2 |  | nmpropd.2 | ⊢ ( 𝜑  →  ( +g ‘ 𝐾 )  =  ( +g ‘ 𝐿 ) ) | 
						
							| 3 |  | nmpropd.3 | ⊢ ( 𝜑  →  ( dist ‘ 𝐾 )  =  ( dist ‘ 𝐿 ) ) | 
						
							| 4 |  | eqidd | ⊢ ( 𝜑  →  𝑥  =  𝑥 ) | 
						
							| 5 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) ) | 
						
							| 6 | 2 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ∧  𝑦  ∈  ( Base ‘ 𝐾 ) ) )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 7 | 5 1 6 | grpidpropd | ⊢ ( 𝜑  →  ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐿 ) ) | 
						
							| 8 | 3 4 7 | oveq123d | ⊢ ( 𝜑  →  ( 𝑥 ( dist ‘ 𝐾 ) ( 0g ‘ 𝐾 ) )  =  ( 𝑥 ( dist ‘ 𝐿 ) ( 0g ‘ 𝐿 ) ) ) | 
						
							| 9 | 1 8 | mpteq12dv | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑥 ( dist ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) )  =  ( 𝑥  ∈  ( Base ‘ 𝐿 )  ↦  ( 𝑥 ( dist ‘ 𝐿 ) ( 0g ‘ 𝐿 ) ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( norm ‘ 𝐾 )  =  ( norm ‘ 𝐾 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 12 |  | eqid | ⊢ ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐾 ) | 
						
							| 13 |  | eqid | ⊢ ( dist ‘ 𝐾 )  =  ( dist ‘ 𝐾 ) | 
						
							| 14 | 10 11 12 13 | nmfval | ⊢ ( norm ‘ 𝐾 )  =  ( 𝑥  ∈  ( Base ‘ 𝐾 )  ↦  ( 𝑥 ( dist ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( norm ‘ 𝐿 )  =  ( norm ‘ 𝐿 ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝐿 )  =  ( Base ‘ 𝐿 ) | 
						
							| 17 |  | eqid | ⊢ ( 0g ‘ 𝐿 )  =  ( 0g ‘ 𝐿 ) | 
						
							| 18 |  | eqid | ⊢ ( dist ‘ 𝐿 )  =  ( dist ‘ 𝐿 ) | 
						
							| 19 | 15 16 17 18 | nmfval | ⊢ ( norm ‘ 𝐿 )  =  ( 𝑥  ∈  ( Base ‘ 𝐿 )  ↦  ( 𝑥 ( dist ‘ 𝐿 ) ( 0g ‘ 𝐿 ) ) ) | 
						
							| 20 | 9 14 19 | 3eqtr4g | ⊢ ( 𝜑  →  ( norm ‘ 𝐾 )  =  ( norm ‘ 𝐿 ) ) |