Step |
Hyp |
Ref |
Expression |
1 |
|
nmpropd.1 |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
2 |
|
nmpropd.2 |
⊢ ( 𝜑 → ( +g ‘ 𝐾 ) = ( +g ‘ 𝐿 ) ) |
3 |
|
nmpropd.3 |
⊢ ( 𝜑 → ( dist ‘ 𝐾 ) = ( dist ‘ 𝐿 ) ) |
4 |
|
eqidd |
⊢ ( 𝜑 → 𝑥 = 𝑥 ) |
5 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) ) |
6 |
2
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
7 |
5 1 6
|
grpidpropd |
⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
8 |
3 4 7
|
oveq123d |
⊢ ( 𝜑 → ( 𝑥 ( dist ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) = ( 𝑥 ( dist ‘ 𝐿 ) ( 0g ‘ 𝐿 ) ) ) |
9 |
1 8
|
mpteq12dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑥 ( dist ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑥 ( dist ‘ 𝐿 ) ( 0g ‘ 𝐿 ) ) ) ) |
10 |
|
eqid |
⊢ ( norm ‘ 𝐾 ) = ( norm ‘ 𝐾 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
13 |
|
eqid |
⊢ ( dist ‘ 𝐾 ) = ( dist ‘ 𝐾 ) |
14 |
10 11 12 13
|
nmfval |
⊢ ( norm ‘ 𝐾 ) = ( 𝑥 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑥 ( dist ‘ 𝐾 ) ( 0g ‘ 𝐾 ) ) ) |
15 |
|
eqid |
⊢ ( norm ‘ 𝐿 ) = ( norm ‘ 𝐿 ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
18 |
|
eqid |
⊢ ( dist ‘ 𝐿 ) = ( dist ‘ 𝐿 ) |
19 |
15 16 17 18
|
nmfval |
⊢ ( norm ‘ 𝐿 ) = ( 𝑥 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑥 ( dist ‘ 𝐿 ) ( 0g ‘ 𝐿 ) ) ) |
20 |
9 14 19
|
3eqtr4g |
⊢ ( 𝜑 → ( norm ‘ 𝐾 ) = ( norm ‘ 𝐿 ) ) |