| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmf.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | nmf.n | ⊢ 𝑁  =  ( norm ‘ 𝐺 ) | 
						
							| 3 |  | nmeq0.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 4 | 1 2 | nmcl | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 5 | 4 | 3adant3 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐴  ≠   0  )  →  ( 𝑁 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 6 | 1 2 | nmge0 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋 )  →  0  ≤  ( 𝑁 ‘ 𝐴 ) ) | 
						
							| 7 | 6 | 3adant3 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐴  ≠   0  )  →  0  ≤  ( 𝑁 ‘ 𝐴 ) ) | 
						
							| 8 | 1 2 3 | nmne0 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐴  ≠   0  )  →  ( 𝑁 ‘ 𝐴 )  ≠  0 ) | 
						
							| 9 | 5 7 8 | ne0gt0d | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐴  ≠   0  )  →  0  <  ( 𝑁 ‘ 𝐴 ) ) | 
						
							| 10 | 5 9 | elrpd | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐴  ≠   0  )  →  ( 𝑁 ‘ 𝐴 )  ∈  ℝ+ ) |