Metamath Proof Explorer


Theorem nmrpcl

Description: The norm of a nonzero element is a positive real. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x 𝑋 = ( Base ‘ 𝐺 )
nmf.n 𝑁 = ( norm ‘ 𝐺 )
nmeq0.z 0 = ( 0g𝐺 )
Assertion nmrpcl ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐴0 ) → ( 𝑁𝐴 ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 nmf.x 𝑋 = ( Base ‘ 𝐺 )
2 nmf.n 𝑁 = ( norm ‘ 𝐺 )
3 nmeq0.z 0 = ( 0g𝐺 )
4 1 2 nmcl ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋 ) → ( 𝑁𝐴 ) ∈ ℝ )
5 4 3adant3 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐴0 ) → ( 𝑁𝐴 ) ∈ ℝ )
6 1 2 nmge0 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋 ) → 0 ≤ ( 𝑁𝐴 ) )
7 6 3adant3 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐴0 ) → 0 ≤ ( 𝑁𝐴 ) )
8 1 2 3 nmne0 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐴0 ) → ( 𝑁𝐴 ) ≠ 0 )
9 5 7 8 ne0gt0d ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐴0 ) → 0 < ( 𝑁𝐴 ) )
10 5 9 elrpd ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐴0 ) → ( 𝑁𝐴 ) ∈ ℝ+ )