Step |
Hyp |
Ref |
Expression |
1 |
|
nmsq.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
nmsq.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
nmsq.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
4 |
1 2 3
|
cphnm |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝑁 ‘ 𝐴 ) = ( √ ‘ ( 𝐴 , 𝐴 ) ) ) |
5 |
4
|
oveq1d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( ( √ ‘ ( 𝐴 , 𝐴 ) ) ↑ 2 ) ) |
6 |
1 2
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 𝐴 ) ∈ ℂ ) |
7 |
6
|
3anidm23 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 𝐴 ) ∈ ℂ ) |
8 |
7
|
sqsqrtd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( √ ‘ ( 𝐴 , 𝐴 ) ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
9 |
5 8
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |