| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmf.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | nmf.n | ⊢ 𝑁  =  ( norm ‘ 𝐺 ) | 
						
							| 3 |  | nmmtri.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐺  ∈  NrmGrp ) | 
						
							| 5 |  | ngpgrp | ⊢ ( 𝐺  ∈  NrmGrp  →  𝐺  ∈  Grp ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐺  ∈  Grp ) | 
						
							| 7 |  | simp3 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐵  ∈  𝑋 ) | 
						
							| 8 |  | simp2 | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝐴  ∈  𝑋 ) | 
						
							| 9 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 10 | 1 3 9 | grpinvsub | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  −  𝐴 ) )  =  ( 𝐴  −  𝐵 ) ) | 
						
							| 11 | 6 7 8 10 | syl3anc | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  −  𝐴 ) )  =  ( 𝐴  −  𝐵 ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  −  𝐴 ) ) )  =  ( 𝑁 ‘ ( 𝐴  −  𝐵 ) ) ) | 
						
							| 13 | 1 3 | grpsubcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( 𝐵  −  𝐴 )  ∈  𝑋 ) | 
						
							| 14 | 6 7 8 13 | syl3anc | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐵  −  𝐴 )  ∈  𝑋 ) | 
						
							| 15 | 1 2 9 | nminv | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  ( 𝐵  −  𝐴 )  ∈  𝑋 )  →  ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  −  𝐴 ) ) )  =  ( 𝑁 ‘ ( 𝐵  −  𝐴 ) ) ) | 
						
							| 16 | 4 14 15 | syl2anc | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  −  𝐴 ) ) )  =  ( 𝑁 ‘ ( 𝐵  −  𝐴 ) ) ) | 
						
							| 17 | 12 16 | eqtr3d | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝑁 ‘ ( 𝐴  −  𝐵 ) )  =  ( 𝑁 ‘ ( 𝐵  −  𝐴 ) ) ) |