Step |
Hyp |
Ref |
Expression |
1 |
|
nmf.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
nmf.n |
⊢ 𝑁 = ( norm ‘ 𝐺 ) |
3 |
|
nmmtri.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
simp1 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐺 ∈ NrmGrp ) |
5 |
|
ngpgrp |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
7 |
|
simp3 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
8 |
|
simp2 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
9 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
10 |
1 3 9
|
grpinvsub |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 − 𝐴 ) ) = ( 𝐴 − 𝐵 ) ) |
11 |
6 7 8 10
|
syl3anc |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 − 𝐴 ) ) = ( 𝐴 − 𝐵 ) ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 − 𝐴 ) ) ) = ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ) |
13 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 − 𝐴 ) ∈ 𝑋 ) |
14 |
6 7 8 13
|
syl3anc |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 − 𝐴 ) ∈ 𝑋 ) |
15 |
1 2 9
|
nminv |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐵 − 𝐴 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 − 𝐴 ) ) ) = ( 𝑁 ‘ ( 𝐵 − 𝐴 ) ) ) |
16 |
4 14 15
|
syl2anc |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 − 𝐴 ) ) ) = ( 𝑁 ‘ ( 𝐵 − 𝐴 ) ) ) |
17 |
12 16
|
eqtr3d |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) = ( 𝑁 ‘ ( 𝐵 − 𝐴 ) ) ) |