Step |
Hyp |
Ref |
Expression |
1 |
|
nmf.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
nmf.n |
⊢ 𝑁 = ( norm ‘ 𝐺 ) |
3 |
|
nmtri.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
ngpgrp |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
6 |
|
simp3 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
7 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
8 |
1 7
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) |
9 |
5 6 8
|
syl2anc |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) |
10 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
11 |
1 2 10
|
nmmtri |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) |
12 |
9 11
|
syld3an3 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) |
13 |
|
simp2 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
14 |
1 3 10 7 5 13 6
|
grpsubinv |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( -g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) = ( 𝐴 + 𝐵 ) ) |
15 |
14
|
fveq2d |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( -g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) = ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ) |
16 |
1 2 7
|
nminv |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) = ( 𝑁 ‘ 𝐵 ) ) |
17 |
16
|
3adant2 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) = ( 𝑁 ‘ 𝐵 ) ) |
18 |
17
|
oveq2d |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) = ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) ) |
19 |
12 15 18
|
3brtr3d |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) ) |