| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmfval2.n | ⊢ 𝑁  =  ( norm ‘ 𝑊 ) | 
						
							| 2 |  | nmfval2.x | ⊢ 𝑋  =  ( Base ‘ 𝑊 ) | 
						
							| 3 |  | nmfval2.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 4 |  | nmfval2.d | ⊢ 𝐷  =  ( dist ‘ 𝑊 ) | 
						
							| 5 |  | nmfval2.e | ⊢ 𝐸  =  ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) ) | 
						
							| 6 | 1 2 3 4 | nmval | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝑁 ‘ 𝐴 )  =  ( 𝐴 𝐷  0  ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  =  ( 𝐴 𝐷  0  ) ) | 
						
							| 8 | 5 | oveqi | ⊢ ( 𝐴 𝐸  0  )  =  ( 𝐴 ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) )  0  ) | 
						
							| 9 |  | id | ⊢ ( 𝐴  ∈  𝑋  →  𝐴  ∈  𝑋 ) | 
						
							| 10 | 2 3 | grpidcl | ⊢ ( 𝑊  ∈  Grp  →   0   ∈  𝑋 ) | 
						
							| 11 |  | ovres | ⊢ ( ( 𝐴  ∈  𝑋  ∧   0   ∈  𝑋 )  →  ( 𝐴 ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) )  0  )  =  ( 𝐴 𝐷  0  ) ) | 
						
							| 12 | 9 10 11 | syl2anr | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) )  0  )  =  ( 𝐴 𝐷  0  ) ) | 
						
							| 13 | 8 12 | eqtr2id | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐷  0  )  =  ( 𝐴 𝐸  0  ) ) | 
						
							| 14 | 7 13 | eqtrd | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝐴  ∈  𝑋 )  →  ( 𝑁 ‘ 𝐴 )  =  ( 𝐴 𝐸  0  ) ) |