Step |
Hyp |
Ref |
Expression |
1 |
|
isnlm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
isnlm.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
3 |
|
isnlm.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
4 |
|
isnlm.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
5 |
|
isnlm.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
6 |
|
isnlm.a |
⊢ 𝐴 = ( norm ‘ 𝐹 ) |
7 |
1 2 3 4 5 6
|
isnlm |
⊢ ( 𝑊 ∈ NrmMod ↔ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
8 |
7
|
simprbi |
⊢ ( 𝑊 ∈ NrmMod → ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) |
9 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑁 ‘ ( 𝑋 · 𝑦 ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑋 ) ) |
11 |
10
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑦 ) ) ) |
12 |
9 11
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑋 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝑦 = 𝑌 → ( 𝑁 ‘ ( 𝑋 · 𝑦 ) ) = ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑌 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑦 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |
17 |
14 16
|
eqeq12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑁 ‘ ( 𝑋 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) ) |
18 |
12 17
|
rspc2v |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) → ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) ) |
19 |
8 18
|
syl5com |
⊢ ( 𝑊 ∈ NrmMod → ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) ) |
20 |
19
|
3impib |
⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐴 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |