Step |
Hyp |
Ref |
Expression |
1 |
|
elnmz.1 |
⊢ 𝑁 = { 𝑥 ∈ 𝑋 ∣ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) } |
2 |
|
nmzsubg.2 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
3 |
|
nmzsubg.3 |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
1
|
ssrab3 |
⊢ 𝑁 ⊆ 𝑋 |
5 |
4
|
a1i |
⊢ ( 𝐺 ∈ Grp → 𝑁 ⊆ 𝑋 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
7 |
2 6
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
8 |
2 3 6
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑧 ) = 𝑧 ) |
9 |
2 3 6
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 + ( 0g ‘ 𝐺 ) ) = 𝑧 ) |
10 |
8 9
|
eqtr4d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑧 ) = ( 𝑧 + ( 0g ‘ 𝐺 ) ) ) |
11 |
10
|
eleq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + ( 0g ‘ 𝐺 ) ) ∈ 𝑆 ) ) |
12 |
11
|
ralrimiva |
⊢ ( 𝐺 ∈ Grp → ∀ 𝑧 ∈ 𝑋 ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + ( 0g ‘ 𝐺 ) ) ∈ 𝑆 ) ) |
13 |
1
|
elnmz |
⊢ ( ( 0g ‘ 𝐺 ) ∈ 𝑁 ↔ ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + ( 0g ‘ 𝐺 ) ) ∈ 𝑆 ) ) ) |
14 |
7 12 13
|
sylanbrc |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑁 ) |
15 |
14
|
ne0d |
⊢ ( 𝐺 ∈ Grp → 𝑁 ≠ ∅ ) |
16 |
|
id |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) |
17 |
4
|
sseli |
⊢ ( 𝑧 ∈ 𝑁 → 𝑧 ∈ 𝑋 ) |
18 |
4
|
sseli |
⊢ ( 𝑤 ∈ 𝑁 → 𝑤 ∈ 𝑋 ) |
19 |
2 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑧 + 𝑤 ) ∈ 𝑋 ) |
20 |
16 17 18 19
|
syl3an |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) → ( 𝑧 + 𝑤 ) ∈ 𝑋 ) |
21 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
22 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑧 ∈ 𝑁 ) |
23 |
4 22
|
sselid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) |
24 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑤 ∈ 𝑁 ) |
25 |
4 24
|
sselid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑤 ∈ 𝑋 ) |
26 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑢 ∈ 𝑋 ) |
27 |
2 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ) ) → ( ( 𝑧 + 𝑤 ) + 𝑢 ) = ( 𝑧 + ( 𝑤 + 𝑢 ) ) ) |
28 |
21 23 25 26 27
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + 𝑤 ) + 𝑢 ) = ( 𝑧 + ( 𝑤 + 𝑢 ) ) ) |
29 |
28
|
eleq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( 𝑧 + 𝑤 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑧 + ( 𝑤 + 𝑢 ) ) ∈ 𝑆 ) ) |
30 |
2 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ) → ( 𝑤 + 𝑢 ) ∈ 𝑋 ) |
31 |
21 25 26 30
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑤 + 𝑢 ) ∈ 𝑋 ) |
32 |
1
|
nmzbi |
⊢ ( ( 𝑧 ∈ 𝑁 ∧ ( 𝑤 + 𝑢 ) ∈ 𝑋 ) → ( ( 𝑧 + ( 𝑤 + 𝑢 ) ) ∈ 𝑆 ↔ ( ( 𝑤 + 𝑢 ) + 𝑧 ) ∈ 𝑆 ) ) |
33 |
22 31 32
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( 𝑤 + 𝑢 ) ) ∈ 𝑆 ↔ ( ( 𝑤 + 𝑢 ) + 𝑧 ) ∈ 𝑆 ) ) |
34 |
2 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑤 + 𝑢 ) + 𝑧 ) = ( 𝑤 + ( 𝑢 + 𝑧 ) ) ) |
35 |
21 25 26 23 34
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑤 + 𝑢 ) + 𝑧 ) = ( 𝑤 + ( 𝑢 + 𝑧 ) ) ) |
36 |
35
|
eleq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( 𝑤 + 𝑢 ) + 𝑧 ) ∈ 𝑆 ↔ ( 𝑤 + ( 𝑢 + 𝑧 ) ) ∈ 𝑆 ) ) |
37 |
2 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑢 + 𝑧 ) ∈ 𝑋 ) |
38 |
21 26 23 37
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑢 + 𝑧 ) ∈ 𝑋 ) |
39 |
1
|
nmzbi |
⊢ ( ( 𝑤 ∈ 𝑁 ∧ ( 𝑢 + 𝑧 ) ∈ 𝑋 ) → ( ( 𝑤 + ( 𝑢 + 𝑧 ) ) ∈ 𝑆 ↔ ( ( 𝑢 + 𝑧 ) + 𝑤 ) ∈ 𝑆 ) ) |
40 |
24 38 39
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑤 + ( 𝑢 + 𝑧 ) ) ∈ 𝑆 ↔ ( ( 𝑢 + 𝑧 ) + 𝑤 ) ∈ 𝑆 ) ) |
41 |
33 36 40
|
3bitrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( 𝑤 + 𝑢 ) ) ∈ 𝑆 ↔ ( ( 𝑢 + 𝑧 ) + 𝑤 ) ∈ 𝑆 ) ) |
42 |
2 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑢 + 𝑧 ) + 𝑤 ) = ( 𝑢 + ( 𝑧 + 𝑤 ) ) ) |
43 |
21 26 23 25 42
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑢 + 𝑧 ) + 𝑤 ) = ( 𝑢 + ( 𝑧 + 𝑤 ) ) ) |
44 |
43
|
eleq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( 𝑢 + 𝑧 ) + 𝑤 ) ∈ 𝑆 ↔ ( 𝑢 + ( 𝑧 + 𝑤 ) ) ∈ 𝑆 ) ) |
45 |
29 41 44
|
3bitrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( 𝑧 + 𝑤 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( 𝑧 + 𝑤 ) ) ∈ 𝑆 ) ) |
46 |
45
|
ralrimiva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) → ∀ 𝑢 ∈ 𝑋 ( ( ( 𝑧 + 𝑤 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( 𝑧 + 𝑤 ) ) ∈ 𝑆 ) ) |
47 |
1
|
elnmz |
⊢ ( ( 𝑧 + 𝑤 ) ∈ 𝑁 ↔ ( ( 𝑧 + 𝑤 ) ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑋 ( ( ( 𝑧 + 𝑤 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( 𝑧 + 𝑤 ) ) ∈ 𝑆 ) ) ) |
48 |
20 46 47
|
sylanbrc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) → ( 𝑧 + 𝑤 ) ∈ 𝑁 ) |
49 |
48
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑁 ) → ( 𝑧 + 𝑤 ) ∈ 𝑁 ) |
50 |
49
|
ralrimiva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) → ∀ 𝑤 ∈ 𝑁 ( 𝑧 + 𝑤 ) ∈ 𝑁 ) |
51 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
52 |
2 51
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
53 |
17 52
|
sylan2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
54 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑧 ∈ 𝑁 ) |
55 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
56 |
53
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
57 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑢 ∈ 𝑋 ) |
58 |
2 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) → ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑋 ) |
59 |
55 57 56 58
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑋 ) |
60 |
2 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ∈ 𝑋 ) |
61 |
55 56 59 60
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ∈ 𝑋 ) |
62 |
1
|
nmzbi |
⊢ ( ( 𝑧 ∈ 𝑁 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ∈ 𝑋 ) → ( ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) ∈ 𝑆 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) ∈ 𝑆 ) ) |
63 |
54 61 62
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) ∈ 𝑆 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) ∈ 𝑆 ) ) |
64 |
4 54
|
sselid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) |
65 |
2 3 6 51
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) = ( 0g ‘ 𝐺 ) ) |
66 |
55 64 65
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑧 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) = ( 0g ‘ 𝐺 ) ) |
67 |
66
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( ( 0g ‘ 𝐺 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) |
68 |
2 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑧 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑋 ) ) → ( ( 𝑧 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) ) |
69 |
55 64 56 59 68
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) ) |
70 |
2 3 6
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
71 |
55 59 70
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
72 |
67 69 71
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) = ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
73 |
72
|
eleq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) ∈ 𝑆 ↔ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
74 |
2 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) ) ) |
75 |
55 56 59 64 74
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) ) ) |
76 |
2 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) = ( 𝑢 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) ) ) |
77 |
55 57 56 64 76
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) = ( 𝑢 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) ) ) |
78 |
2 3 6 51
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) = ( 0g ‘ 𝐺 ) ) |
79 |
55 64 78
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) = ( 0g ‘ 𝐺 ) ) |
80 |
79
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑢 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) ) = ( 𝑢 + ( 0g ‘ 𝐺 ) ) ) |
81 |
2 3 6
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ) → ( 𝑢 + ( 0g ‘ 𝐺 ) ) = 𝑢 ) |
82 |
55 57 81
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑢 + ( 0g ‘ 𝐺 ) ) = 𝑢 ) |
83 |
77 80 82
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) = 𝑢 ) |
84 |
83
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ) |
85 |
75 84
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ) |
86 |
85
|
eleq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) ∈ 𝑆 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ∈ 𝑆 ) ) |
87 |
63 73 86
|
3bitr3rd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
88 |
87
|
ralrimiva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) → ∀ 𝑢 ∈ 𝑋 ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
89 |
1
|
elnmz |
⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑁 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑋 ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) ) |
90 |
53 88 89
|
sylanbrc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑁 ) |
91 |
50 90
|
jca |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) → ( ∀ 𝑤 ∈ 𝑁 ( 𝑧 + 𝑤 ) ∈ 𝑁 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑁 ) ) |
92 |
91
|
ralrimiva |
⊢ ( 𝐺 ∈ Grp → ∀ 𝑧 ∈ 𝑁 ( ∀ 𝑤 ∈ 𝑁 ( 𝑧 + 𝑤 ) ∈ 𝑁 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑁 ) ) |
93 |
2 3 51
|
issubg2 |
⊢ ( 𝐺 ∈ Grp → ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑁 ⊆ 𝑋 ∧ 𝑁 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑁 ( ∀ 𝑤 ∈ 𝑁 ( 𝑧 + 𝑤 ) ∈ 𝑁 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑁 ) ) ) ) |
94 |
5 15 92 93
|
mpbir3and |
⊢ ( 𝐺 ∈ Grp → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |