| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnmz.1 |
⊢ 𝑁 = { 𝑥 ∈ 𝑋 ∣ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) } |
| 2 |
|
nmzsubg.2 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 3 |
|
nmzsubg.3 |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
1
|
ssrab3 |
⊢ 𝑁 ⊆ 𝑋 |
| 5 |
4
|
a1i |
⊢ ( 𝐺 ∈ Grp → 𝑁 ⊆ 𝑋 ) |
| 6 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 7 |
2 6
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 8 |
2 3 6
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑧 ) = 𝑧 ) |
| 9 |
2 3 6
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 + ( 0g ‘ 𝐺 ) ) = 𝑧 ) |
| 10 |
8 9
|
eqtr4d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑧 ) = ( 𝑧 + ( 0g ‘ 𝐺 ) ) ) |
| 11 |
10
|
eleq1d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + ( 0g ‘ 𝐺 ) ) ∈ 𝑆 ) ) |
| 12 |
11
|
ralrimiva |
⊢ ( 𝐺 ∈ Grp → ∀ 𝑧 ∈ 𝑋 ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + ( 0g ‘ 𝐺 ) ) ∈ 𝑆 ) ) |
| 13 |
1
|
elnmz |
⊢ ( ( 0g ‘ 𝐺 ) ∈ 𝑁 ↔ ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝑋 ( ( ( 0g ‘ 𝐺 ) + 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 + ( 0g ‘ 𝐺 ) ) ∈ 𝑆 ) ) ) |
| 14 |
7 12 13
|
sylanbrc |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑁 ) |
| 15 |
14
|
ne0d |
⊢ ( 𝐺 ∈ Grp → 𝑁 ≠ ∅ ) |
| 16 |
|
id |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Grp ) |
| 17 |
4
|
sseli |
⊢ ( 𝑧 ∈ 𝑁 → 𝑧 ∈ 𝑋 ) |
| 18 |
4
|
sseli |
⊢ ( 𝑤 ∈ 𝑁 → 𝑤 ∈ 𝑋 ) |
| 19 |
2 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑧 + 𝑤 ) ∈ 𝑋 ) |
| 20 |
16 17 18 19
|
syl3an |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) → ( 𝑧 + 𝑤 ) ∈ 𝑋 ) |
| 21 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 22 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑧 ∈ 𝑁 ) |
| 23 |
4 22
|
sselid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) |
| 24 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑤 ∈ 𝑁 ) |
| 25 |
4 24
|
sselid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑤 ∈ 𝑋 ) |
| 26 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑢 ∈ 𝑋 ) |
| 27 |
2 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ) ) → ( ( 𝑧 + 𝑤 ) + 𝑢 ) = ( 𝑧 + ( 𝑤 + 𝑢 ) ) ) |
| 28 |
21 23 25 26 27
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + 𝑤 ) + 𝑢 ) = ( 𝑧 + ( 𝑤 + 𝑢 ) ) ) |
| 29 |
28
|
eleq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( 𝑧 + 𝑤 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑧 + ( 𝑤 + 𝑢 ) ) ∈ 𝑆 ) ) |
| 30 |
2 3 21 25 26
|
grpcld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑤 + 𝑢 ) ∈ 𝑋 ) |
| 31 |
1
|
nmzbi |
⊢ ( ( 𝑧 ∈ 𝑁 ∧ ( 𝑤 + 𝑢 ) ∈ 𝑋 ) → ( ( 𝑧 + ( 𝑤 + 𝑢 ) ) ∈ 𝑆 ↔ ( ( 𝑤 + 𝑢 ) + 𝑧 ) ∈ 𝑆 ) ) |
| 32 |
22 30 31
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( 𝑤 + 𝑢 ) ) ∈ 𝑆 ↔ ( ( 𝑤 + 𝑢 ) + 𝑧 ) ∈ 𝑆 ) ) |
| 33 |
2 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑤 + 𝑢 ) + 𝑧 ) = ( 𝑤 + ( 𝑢 + 𝑧 ) ) ) |
| 34 |
21 25 26 23 33
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑤 + 𝑢 ) + 𝑧 ) = ( 𝑤 + ( 𝑢 + 𝑧 ) ) ) |
| 35 |
34
|
eleq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( 𝑤 + 𝑢 ) + 𝑧 ) ∈ 𝑆 ↔ ( 𝑤 + ( 𝑢 + 𝑧 ) ) ∈ 𝑆 ) ) |
| 36 |
2 3 21 26 23
|
grpcld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑢 + 𝑧 ) ∈ 𝑋 ) |
| 37 |
1
|
nmzbi |
⊢ ( ( 𝑤 ∈ 𝑁 ∧ ( 𝑢 + 𝑧 ) ∈ 𝑋 ) → ( ( 𝑤 + ( 𝑢 + 𝑧 ) ) ∈ 𝑆 ↔ ( ( 𝑢 + 𝑧 ) + 𝑤 ) ∈ 𝑆 ) ) |
| 38 |
24 36 37
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑤 + ( 𝑢 + 𝑧 ) ) ∈ 𝑆 ↔ ( ( 𝑢 + 𝑧 ) + 𝑤 ) ∈ 𝑆 ) ) |
| 39 |
32 35 38
|
3bitrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( 𝑤 + 𝑢 ) ) ∈ 𝑆 ↔ ( ( 𝑢 + 𝑧 ) + 𝑤 ) ∈ 𝑆 ) ) |
| 40 |
2 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑢 + 𝑧 ) + 𝑤 ) = ( 𝑢 + ( 𝑧 + 𝑤 ) ) ) |
| 41 |
21 26 23 25 40
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑢 + 𝑧 ) + 𝑤 ) = ( 𝑢 + ( 𝑧 + 𝑤 ) ) ) |
| 42 |
41
|
eleq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( 𝑢 + 𝑧 ) + 𝑤 ) ∈ 𝑆 ↔ ( 𝑢 + ( 𝑧 + 𝑤 ) ) ∈ 𝑆 ) ) |
| 43 |
29 39 42
|
3bitrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( 𝑧 + 𝑤 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( 𝑧 + 𝑤 ) ) ∈ 𝑆 ) ) |
| 44 |
43
|
ralrimiva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) → ∀ 𝑢 ∈ 𝑋 ( ( ( 𝑧 + 𝑤 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( 𝑧 + 𝑤 ) ) ∈ 𝑆 ) ) |
| 45 |
1
|
elnmz |
⊢ ( ( 𝑧 + 𝑤 ) ∈ 𝑁 ↔ ( ( 𝑧 + 𝑤 ) ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑋 ( ( ( 𝑧 + 𝑤 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( 𝑧 + 𝑤 ) ) ∈ 𝑆 ) ) ) |
| 46 |
20 44 45
|
sylanbrc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) → ( 𝑧 + 𝑤 ) ∈ 𝑁 ) |
| 47 |
46
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑤 ∈ 𝑁 ) → ( 𝑧 + 𝑤 ) ∈ 𝑁 ) |
| 48 |
47
|
ralrimiva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) → ∀ 𝑤 ∈ 𝑁 ( 𝑧 + 𝑤 ) ∈ 𝑁 ) |
| 49 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 50 |
2 49
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
| 51 |
17 50
|
sylan2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
| 52 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑧 ∈ 𝑁 ) |
| 53 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 54 |
51
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
| 55 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑢 ∈ 𝑋 ) |
| 56 |
2 3 53 55 54
|
grpcld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑋 ) |
| 57 |
2 3 53 54 56
|
grpcld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ∈ 𝑋 ) |
| 58 |
1
|
nmzbi |
⊢ ( ( 𝑧 ∈ 𝑁 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ∈ 𝑋 ) → ( ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) ∈ 𝑆 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) ∈ 𝑆 ) ) |
| 59 |
52 57 58
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) ∈ 𝑆 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) ∈ 𝑆 ) ) |
| 60 |
4 52
|
sselid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) |
| 61 |
2 3 6 49
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) = ( 0g ‘ 𝐺 ) ) |
| 62 |
53 60 61
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑧 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) = ( 0g ‘ 𝐺 ) ) |
| 63 |
62
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( ( 0g ‘ 𝐺 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) |
| 64 |
2 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑧 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑋 ) ) → ( ( 𝑧 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) ) |
| 65 |
53 60 54 56 64
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) ) |
| 66 |
2 3 6
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 67 |
53 56 66
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) = ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 68 |
63 65 67
|
3eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) = ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 69 |
68
|
eleq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑧 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) ∈ 𝑆 ↔ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
| 70 |
2 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) ) ) |
| 71 |
53 54 56 60 70
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) ) ) |
| 72 |
2 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑢 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) = ( 𝑢 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) ) ) |
| 73 |
53 55 54 60 72
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) = ( 𝑢 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) ) ) |
| 74 |
2 3 6 49
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) = ( 0g ‘ 𝐺 ) ) |
| 75 |
53 60 74
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) = ( 0g ‘ 𝐺 ) ) |
| 76 |
75
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑢 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) ) = ( 𝑢 + ( 0g ‘ 𝐺 ) ) ) |
| 77 |
2 3 6
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ) → ( 𝑢 + ( 0g ‘ 𝐺 ) ) = 𝑢 ) |
| 78 |
53 55 77
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( 𝑢 + ( 0g ‘ 𝐺 ) ) = 𝑢 ) |
| 79 |
73 76 78
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) = 𝑢 ) |
| 80 |
79
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) + 𝑧 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ) |
| 81 |
71 80
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ) |
| 82 |
81
|
eleq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) + 𝑧 ) ∈ 𝑆 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ∈ 𝑆 ) ) |
| 83 |
59 69 82
|
3bitr3rd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) ∧ 𝑢 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
| 84 |
83
|
ralrimiva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) → ∀ 𝑢 ∈ 𝑋 ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
| 85 |
1
|
elnmz |
⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑁 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝑋 ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑢 ) ∈ 𝑆 ↔ ( 𝑢 + ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) ) |
| 86 |
51 84 85
|
sylanbrc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑁 ) |
| 87 |
48 86
|
jca |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ) → ( ∀ 𝑤 ∈ 𝑁 ( 𝑧 + 𝑤 ) ∈ 𝑁 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑁 ) ) |
| 88 |
87
|
ralrimiva |
⊢ ( 𝐺 ∈ Grp → ∀ 𝑧 ∈ 𝑁 ( ∀ 𝑤 ∈ 𝑁 ( 𝑧 + 𝑤 ) ∈ 𝑁 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑁 ) ) |
| 89 |
2 3 49
|
issubg2 |
⊢ ( 𝐺 ∈ Grp → ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑁 ⊆ 𝑋 ∧ 𝑁 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑁 ( ∀ 𝑤 ∈ 𝑁 ( 𝑧 + 𝑤 ) ∈ 𝑁 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑁 ) ) ) ) |
| 90 |
5 15 88 89
|
mpbir3and |
⊢ ( 𝐺 ∈ Grp → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |