Step |
Hyp |
Ref |
Expression |
1 |
|
3mix3 |
⊢ ( 𝑁 = 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3 ) ) |
2 |
1
|
a1d |
⊢ ( 𝑁 = 3 → ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → ( 𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3 ) ) ) |
3 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → 𝑁 ∈ ℝ ) |
5 |
|
3re |
⊢ 3 ∈ ℝ |
6 |
5
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → 3 ∈ ℝ ) |
7 |
|
simp3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → 𝑁 ≤ 3 ) |
8 |
4 6 7
|
leltned |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → ( 𝑁 < 3 ↔ 3 ≠ 𝑁 ) ) |
9 |
|
nesym |
⊢ ( 3 ≠ 𝑁 ↔ ¬ 𝑁 = 3 ) |
10 |
8 9
|
bitr2di |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → ( ¬ 𝑁 = 3 ↔ 𝑁 < 3 ) ) |
11 |
|
elnnnn0c |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ) ) |
12 |
|
orc |
⊢ ( 𝑁 = 1 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) |
13 |
12
|
2a1d |
⊢ ( 𝑁 = 1 → ( 𝑁 ∈ ℕ → ( 𝑁 < 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) ) |
14 |
|
eluz2b3 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) |
15 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) ) |
16 |
|
2a1 |
⊢ ( 𝑁 = 2 → ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) |
17 |
|
zre |
⊢ ( 2 ∈ ℤ → 2 ∈ ℝ ) |
18 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
19 |
|
id |
⊢ ( 2 ≤ 𝑁 → 2 ≤ 𝑁 ) |
20 |
|
leltne |
⊢ ( ( 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 2 ≤ 𝑁 ) → ( 2 < 𝑁 ↔ 𝑁 ≠ 2 ) ) |
21 |
17 18 19 20
|
syl3an |
⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) → ( 2 < 𝑁 ↔ 𝑁 ≠ 2 ) ) |
22 |
|
2z |
⊢ 2 ∈ ℤ |
23 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 3 ) ∧ 2 < 𝑁 ) → 2 < 𝑁 ) |
24 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
25 |
24
|
a1i |
⊢ ( 𝑁 ∈ ℤ → 3 = ( 2 + 1 ) ) |
26 |
25
|
breq2d |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 < 3 ↔ 𝑁 < ( 2 + 1 ) ) ) |
27 |
26
|
biimpa |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 3 ) → 𝑁 < ( 2 + 1 ) ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 3 ) ∧ 2 < 𝑁 ) → 𝑁 < ( 2 + 1 ) ) |
29 |
|
btwnnz |
⊢ ( ( 2 ∈ ℤ ∧ 2 < 𝑁 ∧ 𝑁 < ( 2 + 1 ) ) → ¬ 𝑁 ∈ ℤ ) |
30 |
22 23 28 29
|
mp3an2i |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 3 ) ∧ 2 < 𝑁 ) → ¬ 𝑁 ∈ ℤ ) |
31 |
30
|
pm2.21d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 3 ) ∧ 2 < 𝑁 ) → ( 𝑁 ∈ ℤ → 𝑁 = 2 ) ) |
32 |
31
|
exp31 |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 < 3 → ( 2 < 𝑁 → ( 𝑁 ∈ ℤ → 𝑁 = 2 ) ) ) ) |
33 |
32
|
com24 |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ∈ ℤ → ( 2 < 𝑁 → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) ) |
34 |
33
|
pm2.43i |
⊢ ( 𝑁 ∈ ℤ → ( 2 < 𝑁 → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) |
35 |
34
|
3ad2ant2 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) → ( 2 < 𝑁 → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) |
36 |
21 35
|
sylbird |
⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) → ( 𝑁 ≠ 2 → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) |
37 |
36
|
com12 |
⊢ ( 𝑁 ≠ 2 → ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) |
38 |
16 37
|
pm2.61ine |
⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) → ( 𝑁 < 3 → 𝑁 = 2 ) ) |
39 |
15 38
|
sylbi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < 3 → 𝑁 = 2 ) ) |
40 |
39
|
imp |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 < 3 ) → 𝑁 = 2 ) |
41 |
40
|
olcd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 < 3 ) → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) |
42 |
41
|
ex |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
43 |
14 42
|
sylbir |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) → ( 𝑁 < 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
44 |
43
|
expcom |
⊢ ( 𝑁 ≠ 1 → ( 𝑁 ∈ ℕ → ( 𝑁 < 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) ) |
45 |
13 44
|
pm2.61ine |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 < 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
46 |
11 45
|
sylbir |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ) → ( 𝑁 < 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
47 |
46
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → ( 𝑁 < 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
48 |
10 47
|
sylbid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → ( ¬ 𝑁 = 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
49 |
48
|
impcom |
⊢ ( ( ¬ 𝑁 = 3 ∧ ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) ) → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) |
50 |
49
|
orcd |
⊢ ( ( ¬ 𝑁 = 3 ∧ ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) ) → ( ( 𝑁 = 1 ∨ 𝑁 = 2 ) ∨ 𝑁 = 3 ) ) |
51 |
|
df-3or |
⊢ ( ( 𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3 ) ↔ ( ( 𝑁 = 1 ∨ 𝑁 = 2 ) ∨ 𝑁 = 3 ) ) |
52 |
50 51
|
sylibr |
⊢ ( ( ¬ 𝑁 = 3 ∧ ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) ) → ( 𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3 ) ) |
53 |
52
|
ex |
⊢ ( ¬ 𝑁 = 3 → ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → ( 𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3 ) ) ) |
54 |
2 53
|
pm2.61i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → ( 𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3 ) ) |