Metamath Proof Explorer


Theorem nn0abscl

Description: The absolute value of an integer is a nonnegative integer. (Contributed by NM, 27-Feb-2005) (Proof shortened by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion nn0abscl ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 zre ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ )
2 absz ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) )
3 1 2 syl ( 𝐴 ∈ ℤ → ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) )
4 3 ibi ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℤ )
5 zcn ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ )
6 absge0 ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) )
7 5 6 syl ( 𝐴 ∈ ℤ → 0 ≤ ( abs ‘ 𝐴 ) )
8 elnn0z ( ( abs ‘ 𝐴 ) ∈ ℕ0 ↔ ( ( abs ‘ 𝐴 ) ∈ ℤ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) )
9 4 7 8 sylanbrc ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℕ0 )