Description: The absolute value of an integer is a nonnegative integer. (Contributed by NM, 27-Feb-2005) (Proof shortened by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | nn0abscl | ⊢ ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℕ0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
2 | absz | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) ) | |
3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ∈ ℤ ↔ ( abs ‘ 𝐴 ) ∈ ℤ ) ) |
4 | 3 | ibi | ⊢ ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℤ ) |
5 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
6 | absge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) | |
7 | 5 6 | syl | ⊢ ( 𝐴 ∈ ℤ → 0 ≤ ( abs ‘ 𝐴 ) ) |
8 | elnn0z | ⊢ ( ( abs ‘ 𝐴 ) ∈ ℕ0 ↔ ( ( abs ‘ 𝐴 ) ∈ ℤ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) | |
9 | 4 7 8 | sylanbrc | ⊢ ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℕ0 ) |