Metamath Proof Explorer
Description: Closure of addition of nonnegative integers, inference form.
(Contributed by Raph Levien, 10-Dec-2002)
|
|
Ref |
Expression |
|
Hypotheses |
nn0addcli.1 |
⊢ 𝑀 ∈ ℕ0 |
|
|
nn0addcli.2 |
⊢ 𝑁 ∈ ℕ0 |
|
Assertion |
nn0addcli |
⊢ ( 𝑀 + 𝑁 ) ∈ ℕ0 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nn0addcli.1 |
⊢ 𝑀 ∈ ℕ0 |
2 |
|
nn0addcli.2 |
⊢ 𝑁 ∈ ℕ0 |
3 |
|
nn0addcl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℕ0 ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝑀 + 𝑁 ) ∈ ℕ0 |