Metamath Proof Explorer


Theorem nn0difffzod

Description: A nonnegative integer that is not in the half-open range from 0 to N is at least N . (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses nn0difffzod.1 ( 𝜑𝑁 ∈ ℤ )
nn0difffzod.2 ( 𝜑𝑀 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) )
Assertion nn0difffzod ( 𝜑 → ¬ 𝑀 < 𝑁 )

Proof

Step Hyp Ref Expression
1 nn0difffzod.1 ( 𝜑𝑁 ∈ ℤ )
2 nn0difffzod.2 ( 𝜑𝑀 ∈ ( ℕ0 ∖ ( 0 ..^ 𝑁 ) ) )
3 2 eldifbd ( 𝜑 → ¬ 𝑀 ∈ ( 0 ..^ 𝑁 ) )
4 2 eldifad ( 𝜑𝑀 ∈ ℕ0 )
5 elfzo0z ( 𝑀 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝑀 ∈ ℕ0𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) )
6 5 biimpri ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) → 𝑀 ∈ ( 0 ..^ 𝑁 ) )
7 6 3expa ( ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℤ ) ∧ 𝑀 < 𝑁 ) → 𝑀 ∈ ( 0 ..^ 𝑁 ) )
8 7 con3i ( ¬ 𝑀 ∈ ( 0 ..^ 𝑁 ) → ¬ ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℤ ) ∧ 𝑀 < 𝑁 ) )
9 imnan ( ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℤ ) → ¬ 𝑀 < 𝑁 ) ↔ ¬ ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℤ ) ∧ 𝑀 < 𝑁 ) )
10 8 9 sylibr ( ¬ 𝑀 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℤ ) → ¬ 𝑀 < 𝑁 ) )
11 10 imp ( ( ¬ 𝑀 ∈ ( 0 ..^ 𝑁 ) ∧ ( 𝑀 ∈ ℕ0𝑁 ∈ ℤ ) ) → ¬ 𝑀 < 𝑁 )
12 3 4 1 11 syl12anc ( 𝜑 → ¬ 𝑀 < 𝑁 )