| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0ge0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) |
| 2 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
| 3 |
|
2re |
⊢ 2 ∈ ℝ |
| 4 |
3
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ ) |
| 5 |
|
2pos |
⊢ 0 < 2 |
| 6 |
5
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 0 < 2 ) |
| 7 |
|
ge0div |
⊢ ( ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 0 < 2 ) → ( 0 ≤ 𝑁 ↔ 0 ≤ ( 𝑁 / 2 ) ) ) |
| 8 |
2 4 6 7
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 ≤ 𝑁 ↔ 0 ≤ ( 𝑁 / 2 ) ) ) |
| 9 |
1 8
|
mpbid |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ ( 𝑁 / 2 ) ) |
| 10 |
|
evendiv2z |
⊢ ( 𝑁 ∈ Even → ( 𝑁 / 2 ) ∈ ℤ ) |
| 11 |
9 10
|
anim12ci |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Even ) → ( ( 𝑁 / 2 ) ∈ ℤ ∧ 0 ≤ ( 𝑁 / 2 ) ) ) |
| 12 |
|
elnn0z |
⊢ ( ( 𝑁 / 2 ) ∈ ℕ0 ↔ ( ( 𝑁 / 2 ) ∈ ℤ ∧ 0 ≤ ( 𝑁 / 2 ) ) ) |
| 13 |
11 12
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Even ) → ( 𝑁 / 2 ) ∈ ℕ0 ) |