| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 2 |  | evend2 | ⊢ ( 𝑁  ∈  ℤ  →  ( 2  ∥  𝑁  ↔  ( 𝑁  /  2 )  ∈  ℤ ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2  ∥  𝑁  ↔  ( 𝑁  /  2 )  ∈  ℤ ) ) | 
						
							| 4 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 5 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 6 | 5 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℝ+ ) | 
						
							| 7 |  | nn0ge0 | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  𝑁 ) | 
						
							| 8 | 4 6 7 | divge0d | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  ( 𝑁  /  2 ) ) | 
						
							| 9 | 8 | anim1ci | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℤ )  →  ( ( 𝑁  /  2 )  ∈  ℤ  ∧  0  ≤  ( 𝑁  /  2 ) ) ) | 
						
							| 10 |  | elnn0z | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ0  ↔  ( ( 𝑁  /  2 )  ∈  ℤ  ∧  0  ≤  ( 𝑁  /  2 ) ) ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℤ )  →  ( 𝑁  /  2 )  ∈  ℕ0 ) | 
						
							| 12 | 11 | ex | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  /  2 )  ∈  ℤ  →  ( 𝑁  /  2 )  ∈  ℕ0 ) ) | 
						
							| 13 | 3 12 | sylbid | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2  ∥  𝑁  →  ( 𝑁  /  2 )  ∈  ℕ0 ) ) | 
						
							| 14 | 13 | imp | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  2  ∥  𝑁 )  →  ( 𝑁  /  2 )  ∈  ℕ0 ) |