Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
2 |
|
evend2 |
⊢ ( 𝑁 ∈ ℤ → ( 2 ∥ 𝑁 ↔ ( 𝑁 / 2 ) ∈ ℤ ) ) |
3 |
1 2
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ∥ 𝑁 ↔ ( 𝑁 / 2 ) ∈ ℤ ) ) |
4 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
5 |
|
2rp |
⊢ 2 ∈ ℝ+ |
6 |
5
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ+ ) |
7 |
|
nn0ge0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) |
8 |
4 6 7
|
divge0d |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ ( 𝑁 / 2 ) ) |
9 |
8
|
anim1ci |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 / 2 ) ∈ ℤ ) → ( ( 𝑁 / 2 ) ∈ ℤ ∧ 0 ≤ ( 𝑁 / 2 ) ) ) |
10 |
|
elnn0z |
⊢ ( ( 𝑁 / 2 ) ∈ ℕ0 ↔ ( ( 𝑁 / 2 ) ∈ ℤ ∧ 0 ≤ ( 𝑁 / 2 ) ) ) |
11 |
9 10
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 / 2 ) ∈ ℤ ) → ( 𝑁 / 2 ) ∈ ℕ0 ) |
12 |
11
|
ex |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 / 2 ) ∈ ℤ → ( 𝑁 / 2 ) ∈ ℕ0 ) ) |
13 |
3 12
|
sylbid |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ∥ 𝑁 → ( 𝑁 / 2 ) ∈ ℕ0 ) ) |
14 |
13
|
imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ∥ 𝑁 ) → ( 𝑁 / 2 ) ∈ ℕ0 ) |