Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( ( 𝑁 / 2 ) ∈ ℕ0 ↔ ( ( 𝑁 / 2 ) ∈ ℕ ∨ ( 𝑁 / 2 ) = 0 ) ) |
2 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
3 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) |
4 |
|
2ne0 |
⊢ 2 ≠ 0 |
5 |
4
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ≠ 0 ) |
6 |
2 3 5
|
diveq0ad |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) = 0 ↔ 𝑁 = 0 ) ) |
7 |
|
eleq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 ∈ ℕ ↔ 0 ∈ ℕ ) ) |
8 |
|
0nnn |
⊢ ¬ 0 ∈ ℕ |
9 |
8
|
pm2.21i |
⊢ ( 0 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℕ ) |
10 |
7 9
|
syl6bi |
⊢ ( 𝑁 = 0 → ( 𝑁 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℕ ) ) |
11 |
10
|
com12 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 = 0 → ( 𝑁 / 2 ) ∈ ℕ ) ) |
12 |
6 11
|
sylbid |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) = 0 → ( 𝑁 / 2 ) ∈ ℕ ) ) |
13 |
12
|
com12 |
⊢ ( ( 𝑁 / 2 ) = 0 → ( 𝑁 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℕ ) ) |
14 |
13
|
jao1i |
⊢ ( ( ( 𝑁 / 2 ) ∈ ℕ ∨ ( 𝑁 / 2 ) = 0 ) → ( 𝑁 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℕ ) ) |
15 |
1 14
|
sylbi |
⊢ ( ( 𝑁 / 2 ) ∈ ℕ0 → ( 𝑁 ∈ ℕ → ( 𝑁 / 2 ) ∈ ℕ ) ) |
16 |
15
|
com12 |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) ∈ ℕ0 → ( 𝑁 / 2 ) ∈ ℕ ) ) |
17 |
|
nnnn0 |
⊢ ( ( 𝑁 / 2 ) ∈ ℕ → ( 𝑁 / 2 ) ∈ ℕ0 ) |
18 |
16 17
|
impbid1 |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) ∈ ℕ0 ↔ ( 𝑁 / 2 ) ∈ ℕ ) ) |