| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ0  ↔  ( ( 𝑁  /  2 )  ∈  ℕ  ∨  ( 𝑁  /  2 )  =  0 ) ) | 
						
							| 2 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 3 |  | 2cnd | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 4 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ≠  0 ) | 
						
							| 6 | 2 3 5 | diveq0ad | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  /  2 )  =  0  ↔  𝑁  =  0 ) ) | 
						
							| 7 |  | eleq1 | ⊢ ( 𝑁  =  0  →  ( 𝑁  ∈  ℕ  ↔  0  ∈  ℕ ) ) | 
						
							| 8 |  | 0nnn | ⊢ ¬  0  ∈  ℕ | 
						
							| 9 | 8 | pm2.21i | ⊢ ( 0  ∈  ℕ  →  ( 𝑁  /  2 )  ∈  ℕ ) | 
						
							| 10 | 7 9 | biimtrdi | ⊢ ( 𝑁  =  0  →  ( 𝑁  ∈  ℕ  →  ( 𝑁  /  2 )  ∈  ℕ ) ) | 
						
							| 11 | 10 | com12 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  =  0  →  ( 𝑁  /  2 )  ∈  ℕ ) ) | 
						
							| 12 | 6 11 | sylbid | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  /  2 )  =  0  →  ( 𝑁  /  2 )  ∈  ℕ ) ) | 
						
							| 13 | 12 | com12 | ⊢ ( ( 𝑁  /  2 )  =  0  →  ( 𝑁  ∈  ℕ  →  ( 𝑁  /  2 )  ∈  ℕ ) ) | 
						
							| 14 | 13 | jao1i | ⊢ ( ( ( 𝑁  /  2 )  ∈  ℕ  ∨  ( 𝑁  /  2 )  =  0 )  →  ( 𝑁  ∈  ℕ  →  ( 𝑁  /  2 )  ∈  ℕ ) ) | 
						
							| 15 | 1 14 | sylbi | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ0  →  ( 𝑁  ∈  ℕ  →  ( 𝑁  /  2 )  ∈  ℕ ) ) | 
						
							| 16 | 15 | com12 | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  /  2 )  ∈  ℕ0  →  ( 𝑁  /  2 )  ∈  ℕ ) ) | 
						
							| 17 |  | nnnn0 | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ  →  ( 𝑁  /  2 )  ∈  ℕ0 ) | 
						
							| 18 | 16 17 | impbid1 | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  /  2 )  ∈  ℕ0  ↔  ( 𝑁  /  2 )  ∈  ℕ ) ) |