| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 2 |
|
nnex |
⊢ ℕ ∈ V |
| 3 |
|
nn0p1nn |
⊢ ( 𝑥 ∈ ℕ0 → ( 𝑥 + 1 ) ∈ ℕ ) |
| 4 |
|
nnm1nn0 |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 − 1 ) ∈ ℕ0 ) |
| 5 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
| 6 |
|
nn0cn |
⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ ) |
| 7 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 8 |
|
subadd |
⊢ ( ( 𝑦 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑦 − 1 ) = 𝑥 ↔ ( 1 + 𝑥 ) = 𝑦 ) ) |
| 9 |
7 8
|
mp3an2 |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑦 − 1 ) = 𝑥 ↔ ( 1 + 𝑥 ) = 𝑦 ) ) |
| 10 |
|
eqcom |
⊢ ( 𝑥 = ( 𝑦 − 1 ) ↔ ( 𝑦 − 1 ) = 𝑥 ) |
| 11 |
|
eqcom |
⊢ ( 𝑦 = ( 1 + 𝑥 ) ↔ ( 1 + 𝑥 ) = 𝑦 ) |
| 12 |
9 10 11
|
3bitr4g |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 = ( 𝑦 − 1 ) ↔ 𝑦 = ( 1 + 𝑥 ) ) ) |
| 13 |
|
addcom |
⊢ ( ( 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 1 + 𝑥 ) = ( 𝑥 + 1 ) ) |
| 14 |
7 13
|
mpan |
⊢ ( 𝑥 ∈ ℂ → ( 1 + 𝑥 ) = ( 𝑥 + 1 ) ) |
| 15 |
14
|
eqeq2d |
⊢ ( 𝑥 ∈ ℂ → ( 𝑦 = ( 1 + 𝑥 ) ↔ 𝑦 = ( 𝑥 + 1 ) ) ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑦 = ( 1 + 𝑥 ) ↔ 𝑦 = ( 𝑥 + 1 ) ) ) |
| 17 |
12 16
|
bitrd |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 = ( 𝑦 − 1 ) ↔ 𝑦 = ( 𝑥 + 1 ) ) ) |
| 18 |
5 6 17
|
syl2anr |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ ) → ( 𝑥 = ( 𝑦 − 1 ) ↔ 𝑦 = ( 𝑥 + 1 ) ) ) |
| 19 |
1 2 3 4 18
|
en3i |
⊢ ℕ0 ≈ ℕ |