Metamath Proof Explorer


Theorem nn0ex

Description: The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004)

Ref Expression
Assertion nn0ex 0 ∈ V

Proof

Step Hyp Ref Expression
1 df-n0 0 = ( ℕ ∪ { 0 } )
2 nnex ℕ ∈ V
3 snex { 0 } ∈ V
4 2 3 unex ( ℕ ∪ { 0 } ) ∈ V
5 1 4 eqeltri 0 ∈ V