Metamath Proof Explorer


Theorem nn0expcld

Description: Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses nn0expcld.1 ( 𝜑𝐴 ∈ ℕ0 )
nn0expcld.2 ( 𝜑𝑁 ∈ ℕ0 )
Assertion nn0expcld ( 𝜑 → ( 𝐴𝑁 ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 nn0expcld.1 ( 𝜑𝐴 ∈ ℕ0 )
2 nn0expcld.2 ( 𝜑𝑁 ∈ ℕ0 )
3 nn0expcl ( ( 𝐴 ∈ ℕ0𝑁 ∈ ℕ0 ) → ( 𝐴𝑁 ) ∈ ℕ0 )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴𝑁 ) ∈ ℕ0 )