Metamath Proof Explorer


Theorem nn0expcli

Description: Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Hypotheses nn0expcli.1 𝐴 ∈ ℕ0
nn0expcli.2 𝑁 ∈ ℕ0
Assertion nn0expcli ( 𝐴𝑁 ) ∈ ℕ0

Proof

Step Hyp Ref Expression
1 nn0expcli.1 𝐴 ∈ ℕ0
2 nn0expcli.2 𝑁 ∈ ℕ0
3 nn0expcl ( ( 𝐴 ∈ ℕ0𝑁 ∈ ℕ0 ) → ( 𝐴𝑁 ) ∈ ℕ0 )
4 1 2 3 mp2an ( 𝐴𝑁 ) ∈ ℕ0