Metamath Proof Explorer


Theorem nn0fz0

Description: A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018)

Ref Expression
Assertion nn0fz0 ( 𝑁 ∈ ℕ0𝑁 ∈ ( 0 ... 𝑁 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝑁 ∈ ℕ0𝑁 ∈ ℕ0 )
2 nn0re ( 𝑁 ∈ ℕ0𝑁 ∈ ℝ )
3 2 leidd ( 𝑁 ∈ ℕ0𝑁𝑁 )
4 fznn0 ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑁 ∈ ℕ0𝑁𝑁 ) ) )
5 1 3 4 mpbir2and ( 𝑁 ∈ ℕ0𝑁 ∈ ( 0 ... 𝑁 ) )
6 elfz3nn0 ( 𝑁 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℕ0 )
7 5 6 impbii ( 𝑁 ∈ ℕ0𝑁 ∈ ( 0 ... 𝑁 ) )