Description: A nonnegative integer is always part of the finite set of sequential nonnegative integers with this integer as upper bound. (Contributed by Scott Fenton, 21-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0fz0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0 ) | |
| 2 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 3 | 2 | leidd | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ≤ 𝑁 ) |
| 4 | fznn0 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 𝑁 ) ) ) | |
| 5 | 1 3 4 | mpbir2and | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 6 | elfz3nn0 | ⊢ ( 𝑁 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ℕ0 ) | |
| 7 | 5 6 | impbii | ⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) |