Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004) (Revised by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0ge0 | ⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 2 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 3 | id | ⊢ ( 𝑁 = 0 → 𝑁 = 0 ) | |
| 4 | 3 | eqcomd | ⊢ ( 𝑁 = 0 → 0 = 𝑁 ) | 
| 5 | 2 4 | orim12i | ⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 0 < 𝑁 ∨ 0 = 𝑁 ) ) | 
| 6 | 1 5 | sylbi | ⊢ ( 𝑁 ∈ ℕ0 → ( 0 < 𝑁 ∨ 0 = 𝑁 ) ) | 
| 7 | 0re | ⊢ 0 ∈ ℝ | |
| 8 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 9 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 ≤ 𝑁 ↔ ( 0 < 𝑁 ∨ 0 = 𝑁 ) ) ) | |
| 10 | 7 8 9 | sylancr | ⊢ ( 𝑁 ∈ ℕ0 → ( 0 ≤ 𝑁 ↔ ( 0 < 𝑁 ∨ 0 = 𝑁 ) ) ) | 
| 11 | 6 10 | mpbird | ⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) |