| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0ge0 |
⊢ ( 𝐾 ∈ ℕ0 → 0 ≤ 𝐾 ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ) → 0 ≤ 𝐾 ) |
| 3 |
|
elnnz |
⊢ ( 𝐿 ∈ ℕ ↔ ( 𝐿 ∈ ℤ ∧ 0 < 𝐿 ) ) |
| 4 |
|
nn0re |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐿 ∈ ℤ ∧ 0 < 𝐿 ) ) → 𝐾 ∈ ℝ ) |
| 6 |
|
zre |
⊢ ( 𝐿 ∈ ℤ → 𝐿 ∈ ℝ ) |
| 7 |
6
|
ad2antrl |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐿 ∈ ℤ ∧ 0 < 𝐿 ) ) → 𝐿 ∈ ℝ ) |
| 8 |
|
simprr |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐿 ∈ ℤ ∧ 0 < 𝐿 ) ) → 0 < 𝐿 ) |
| 9 |
5 7 8
|
3jca |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐿 ∈ ℤ ∧ 0 < 𝐿 ) ) → ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿 ) ) |
| 10 |
3 9
|
sylan2b |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ) → ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿 ) ) |
| 11 |
|
ge0div |
⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿 ) → ( 0 ≤ 𝐾 ↔ 0 ≤ ( 𝐾 / 𝐿 ) ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ) → ( 0 ≤ 𝐾 ↔ 0 ≤ ( 𝐾 / 𝐿 ) ) ) |
| 13 |
2 12
|
mpbid |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ) → 0 ≤ ( 𝐾 / 𝐿 ) ) |