Step |
Hyp |
Ref |
Expression |
1 |
|
nn0ge0 |
⊢ ( 𝐾 ∈ ℕ0 → 0 ≤ 𝐾 ) |
2 |
1
|
adantr |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ) → 0 ≤ 𝐾 ) |
3 |
|
elnnz |
⊢ ( 𝐿 ∈ ℕ ↔ ( 𝐿 ∈ ℤ ∧ 0 < 𝐿 ) ) |
4 |
|
nn0re |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ ) |
5 |
4
|
adantr |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐿 ∈ ℤ ∧ 0 < 𝐿 ) ) → 𝐾 ∈ ℝ ) |
6 |
|
zre |
⊢ ( 𝐿 ∈ ℤ → 𝐿 ∈ ℝ ) |
7 |
6
|
ad2antrl |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐿 ∈ ℤ ∧ 0 < 𝐿 ) ) → 𝐿 ∈ ℝ ) |
8 |
|
simprr |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐿 ∈ ℤ ∧ 0 < 𝐿 ) ) → 0 < 𝐿 ) |
9 |
5 7 8
|
3jca |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝐿 ∈ ℤ ∧ 0 < 𝐿 ) ) → ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿 ) ) |
10 |
3 9
|
sylan2b |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ) → ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿 ) ) |
11 |
|
ge0div |
⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿 ) → ( 0 ≤ 𝐾 ↔ 0 ≤ ( 𝐾 / 𝐿 ) ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ) → ( 0 ≤ 𝐾 ↔ 0 ≤ ( 𝐾 / 𝐿 ) ) ) |
13 |
2 12
|
mpbid |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ) → 0 ≤ ( 𝐾 / 𝐿 ) ) |