Metamath Proof Explorer


Theorem nn0ge2m1nn

Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018) (Revised by AV, 4-Jan-2020)

Ref Expression
Assertion nn0ge2m1nn ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 𝑁 ∈ ℕ0 )
2 1red ( 𝑁 ∈ ℕ0 → 1 ∈ ℝ )
3 2re 2 ∈ ℝ
4 3 a1i ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ )
5 nn0re ( 𝑁 ∈ ℕ0𝑁 ∈ ℝ )
6 2 4 5 3jca ( 𝑁 ∈ ℕ0 → ( 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ) )
7 6 adantr ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ) )
8 simpr ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 2 ≤ 𝑁 )
9 1lt2 1 < 2
10 8 9 jctil ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 1 < 2 ∧ 2 ≤ 𝑁 ) )
11 ltleletr ( ( 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 1 < 2 ∧ 2 ≤ 𝑁 ) → 1 ≤ 𝑁 ) )
12 7 10 11 sylc ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 1 ≤ 𝑁 )
13 elnnnn0c ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ) )
14 1 12 13 sylanbrc ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 𝑁 ∈ ℕ )
15 nn1m1nn ( 𝑁 ∈ ℕ → ( 𝑁 = 1 ∨ ( 𝑁 − 1 ) ∈ ℕ ) )
16 14 15 syl ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 = 1 ∨ ( 𝑁 − 1 ) ∈ ℕ ) )
17 breq2 ( 𝑁 = 1 → ( 2 ≤ 𝑁 ↔ 2 ≤ 1 ) )
18 1re 1 ∈ ℝ
19 18 3 ltnlei ( 1 < 2 ↔ ¬ 2 ≤ 1 )
20 pm2.21 ( ¬ 2 ≤ 1 → ( 2 ≤ 1 → ( 𝑁 − 1 ) ∈ ℕ ) )
21 19 20 sylbi ( 1 < 2 → ( 2 ≤ 1 → ( 𝑁 − 1 ) ∈ ℕ ) )
22 9 21 ax-mp ( 2 ≤ 1 → ( 𝑁 − 1 ) ∈ ℕ )
23 17 22 syl6bi ( 𝑁 = 1 → ( 2 ≤ 𝑁 → ( 𝑁 − 1 ) ∈ ℕ ) )
24 23 adantld ( 𝑁 = 1 → ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ ) )
25 ax-1 ( ( 𝑁 − 1 ) ∈ ℕ → ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ ) )
26 24 25 jaoi ( ( 𝑁 = 1 ∨ ( 𝑁 − 1 ) ∈ ℕ ) → ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ ) )
27 16 26 mpcom ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ )