Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 𝑁 ∈ ℕ0 ) |
2 |
|
1red |
⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℝ ) |
3 |
|
2re |
⊢ 2 ∈ ℝ |
4 |
3
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ ) |
5 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
6 |
2 4 5
|
3jca |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
8 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 2 ≤ 𝑁 ) |
9 |
|
1lt2 |
⊢ 1 < 2 |
10 |
8 9
|
jctil |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 1 < 2 ∧ 2 ≤ 𝑁 ) ) |
11 |
|
ltleletr |
⊢ ( ( 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 1 < 2 ∧ 2 ≤ 𝑁 ) → 1 ≤ 𝑁 ) ) |
12 |
7 10 11
|
sylc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 1 ≤ 𝑁 ) |
13 |
|
elnnnn0c |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ) ) |
14 |
1 12 13
|
sylanbrc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 𝑁 ∈ ℕ ) |
15 |
|
nn1m1nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 = 1 ∨ ( 𝑁 − 1 ) ∈ ℕ ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 = 1 ∨ ( 𝑁 − 1 ) ∈ ℕ ) ) |
17 |
|
breq2 |
⊢ ( 𝑁 = 1 → ( 2 ≤ 𝑁 ↔ 2 ≤ 1 ) ) |
18 |
|
1re |
⊢ 1 ∈ ℝ |
19 |
18 3
|
ltnlei |
⊢ ( 1 < 2 ↔ ¬ 2 ≤ 1 ) |
20 |
|
pm2.21 |
⊢ ( ¬ 2 ≤ 1 → ( 2 ≤ 1 → ( 𝑁 − 1 ) ∈ ℕ ) ) |
21 |
19 20
|
sylbi |
⊢ ( 1 < 2 → ( 2 ≤ 1 → ( 𝑁 − 1 ) ∈ ℕ ) ) |
22 |
9 21
|
ax-mp |
⊢ ( 2 ≤ 1 → ( 𝑁 − 1 ) ∈ ℕ ) |
23 |
17 22
|
syl6bi |
⊢ ( 𝑁 = 1 → ( 2 ≤ 𝑁 → ( 𝑁 − 1 ) ∈ ℕ ) ) |
24 |
23
|
adantld |
⊢ ( 𝑁 = 1 → ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ ) ) |
25 |
|
ax-1 |
⊢ ( ( 𝑁 − 1 ) ∈ ℕ → ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ ) ) |
26 |
24 25
|
jaoi |
⊢ ( ( 𝑁 = 1 ∨ ( 𝑁 − 1 ) ∈ ℕ ) → ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ ) ) |
27 |
16 26
|
mpcom |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ ) |