Step |
Hyp |
Ref |
Expression |
1 |
|
nn0gsumfz.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
nn0gsumfz.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
nn0gsumfz.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
nn0gsumfz.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ) |
5 |
|
nn0gsumfz.y |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
6 |
2
|
fvexi |
⊢ 0 ∈ V |
7 |
4 6
|
jctir |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ∧ 0 ∈ V ) ) |
8 |
|
fsuppmapnn0ub |
⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ∧ 0 ∈ V ) → ( 𝐹 finSupp 0 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) |
9 |
7 5 8
|
sylc |
⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
10 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → ( 𝐹 ↾ ( 0 ... 𝑠 ) ) = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) |
11 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → 𝐺 ∈ CMnd ) |
13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → 𝑠 ∈ ℕ0 ) |
15 |
|
eqid |
⊢ ( 𝐹 ↾ ( 0 ... 𝑠 ) ) = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) |
16 |
1 2 12 13 14 15
|
fsfnn0gsumfsffz |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) ) ) |
17 |
16
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) ) |
18 |
13
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ) |
19 |
|
fz0ssnn0 |
⊢ ( 0 ... 𝑠 ) ⊆ ℕ0 |
20 |
|
elmapssres |
⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ∧ ( 0 ... 𝑠 ) ⊆ ℕ0 ) → ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) |
21 |
18 19 20
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) |
22 |
|
eqeq1 |
⊢ ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) → ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ↔ ( 𝐹 ↾ ( 0 ... 𝑠 ) ) = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) ) |
23 |
|
oveq2 |
⊢ ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) → ( 𝐺 Σg 𝑓 ) = ( 𝐺 Σg ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) → ( ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ↔ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) ) ) |
25 |
22 24
|
3anbi13d |
⊢ ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) → ( ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ↔ ( ( 𝐹 ↾ ( 0 ... 𝑠 ) ) = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) ) ) ) |
26 |
25
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) ∧ 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) → ( ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ↔ ( ( 𝐹 ↾ ( 0 ... 𝑠 ) ) = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) ) ) ) |
27 |
21 26
|
rspcedv |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → ( ( ( 𝐹 ↾ ( 0 ... 𝑠 ) ) = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) ) → ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ) |
28 |
10 11 17 27
|
mp3and |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) |
29 |
28
|
ex |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) → ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ) |
30 |
29
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) → ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ) |
31 |
9 30
|
mpd |
⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) |