Step |
Hyp |
Ref |
Expression |
1 |
|
nn0gsumfz.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
nn0gsumfz.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
nn0gsumfz.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
nn0gsumfz.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ) |
5 |
|
nn0gsumfz.y |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
6 |
1 2 3 4 5
|
nn0gsumfz |
⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) |
7 |
|
simp3 |
⊢ ( ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) |
8 |
7
|
reximi |
⊢ ( ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) → ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) |
9 |
8
|
reximi |
⊢ ( ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) → ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) |
10 |
6 9
|
syl |
⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) |