Step |
Hyp |
Ref |
Expression |
1 |
|
nn0ind.1 |
⊢ ( 𝑥 = 0 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
nn0ind.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
nn0ind.3 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) |
4 |
|
nn0ind.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) |
5 |
|
nn0ind.5 |
⊢ 𝜓 |
6 |
|
nn0ind.6 |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝜒 → 𝜃 ) ) |
7 |
|
elnn0z |
⊢ ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) ) |
8 |
|
0z |
⊢ 0 ∈ ℤ |
9 |
5
|
a1i |
⊢ ( 0 ∈ ℤ → 𝜓 ) |
10 |
|
elnn0z |
⊢ ( 𝑦 ∈ ℕ0 ↔ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ) |
11 |
10 6
|
sylbir |
⊢ ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) → ( 𝜒 → 𝜃 ) ) |
12 |
11
|
3adant1 |
⊢ ( ( 0 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) → ( 𝜒 → 𝜃 ) ) |
13 |
1 2 3 4 9 12
|
uzind |
⊢ ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) → 𝜏 ) |
14 |
8 13
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) → 𝜏 ) |
15 |
7 14
|
sylbi |
⊢ ( 𝐴 ∈ ℕ0 → 𝜏 ) |