| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nn0ind.1 | 
							⊢ ( 𝑥  =  0  →  ( 𝜑  ↔  𝜓 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							nn0ind.2 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜒 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							nn0ind.3 | 
							⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝜑  ↔  𝜃 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							nn0ind.4 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜏 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							nn0ind.5 | 
							⊢ 𝜓  | 
						
						
							| 6 | 
							
								
							 | 
							nn0ind.6 | 
							⊢ ( 𝑦  ∈  ℕ0  →  ( 𝜒  →  𝜃 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							elnn0z | 
							⊢ ( 𝐴  ∈  ℕ0  ↔  ( 𝐴  ∈  ℤ  ∧  0  ≤  𝐴 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							0z | 
							⊢ 0  ∈  ℤ  | 
						
						
							| 9 | 
							
								5
							 | 
							a1i | 
							⊢ ( 0  ∈  ℤ  →  𝜓 )  | 
						
						
							| 10 | 
							
								
							 | 
							elnn0z | 
							⊢ ( 𝑦  ∈  ℕ0  ↔  ( 𝑦  ∈  ℤ  ∧  0  ≤  𝑦 ) )  | 
						
						
							| 11 | 
							
								10 6
							 | 
							sylbir | 
							⊢ ( ( 𝑦  ∈  ℤ  ∧  0  ≤  𝑦 )  →  ( 𝜒  →  𝜃 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							3adant1 | 
							⊢ ( ( 0  ∈  ℤ  ∧  𝑦  ∈  ℤ  ∧  0  ≤  𝑦 )  →  ( 𝜒  →  𝜃 ) )  | 
						
						
							| 13 | 
							
								1 2 3 4 9 12
							 | 
							uzind | 
							⊢ ( ( 0  ∈  ℤ  ∧  𝐴  ∈  ℤ  ∧  0  ≤  𝐴 )  →  𝜏 )  | 
						
						
							| 14 | 
							
								8 13
							 | 
							mp3an1 | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  0  ≤  𝐴 )  →  𝜏 )  | 
						
						
							| 15 | 
							
								7 14
							 | 
							sylbi | 
							⊢ ( 𝐴  ∈  ℕ0  →  𝜏 )  |