| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 2 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 4 | 1 3 | leloed | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  ≤  2  ↔  ( 𝑁  <  2  ∨  𝑁  =  2 ) ) ) | 
						
							| 5 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 6 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 7 |  | zltlem1 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( 𝑁  <  2  ↔  𝑁  ≤  ( 2  −  1 ) ) ) | 
						
							| 8 | 5 6 7 | sylancl | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  <  2  ↔  𝑁  ≤  ( 2  −  1 ) ) ) | 
						
							| 9 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2  −  1 )  =  1 ) | 
						
							| 11 | 10 | breq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  ≤  ( 2  −  1 )  ↔  𝑁  ≤  1 ) ) | 
						
							| 12 | 8 11 | bitrd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  <  2  ↔  𝑁  ≤  1 ) ) | 
						
							| 13 |  | 1red | ⊢ ( 𝑁  ∈  ℕ0  →  1  ∈  ℝ ) | 
						
							| 14 | 1 13 | leloed | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  ≤  1  ↔  ( 𝑁  <  1  ∨  𝑁  =  1 ) ) ) | 
						
							| 15 |  | nn0lt10b | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  <  1  ↔  𝑁  =  0 ) ) | 
						
							| 16 |  | 3mix1 | ⊢ ( 𝑁  =  0  →  ( 𝑁  =  0  ∨  𝑁  =  1  ∨  𝑁  =  2 ) ) | 
						
							| 17 | 15 16 | biimtrdi | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  <  1  →  ( 𝑁  =  0  ∨  𝑁  =  1  ∨  𝑁  =  2 ) ) ) | 
						
							| 18 | 17 | com12 | ⊢ ( 𝑁  <  1  →  ( 𝑁  ∈  ℕ0  →  ( 𝑁  =  0  ∨  𝑁  =  1  ∨  𝑁  =  2 ) ) ) | 
						
							| 19 |  | 3mix2 | ⊢ ( 𝑁  =  1  →  ( 𝑁  =  0  ∨  𝑁  =  1  ∨  𝑁  =  2 ) ) | 
						
							| 20 | 19 | a1d | ⊢ ( 𝑁  =  1  →  ( 𝑁  ∈  ℕ0  →  ( 𝑁  =  0  ∨  𝑁  =  1  ∨  𝑁  =  2 ) ) ) | 
						
							| 21 | 18 20 | jaoi | ⊢ ( ( 𝑁  <  1  ∨  𝑁  =  1 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑁  =  0  ∨  𝑁  =  1  ∨  𝑁  =  2 ) ) ) | 
						
							| 22 | 21 | com12 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  <  1  ∨  𝑁  =  1 )  →  ( 𝑁  =  0  ∨  𝑁  =  1  ∨  𝑁  =  2 ) ) ) | 
						
							| 23 | 14 22 | sylbid | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  ≤  1  →  ( 𝑁  =  0  ∨  𝑁  =  1  ∨  𝑁  =  2 ) ) ) | 
						
							| 24 | 12 23 | sylbid | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  <  2  →  ( 𝑁  =  0  ∨  𝑁  =  1  ∨  𝑁  =  2 ) ) ) | 
						
							| 25 | 24 | com12 | ⊢ ( 𝑁  <  2  →  ( 𝑁  ∈  ℕ0  →  ( 𝑁  =  0  ∨  𝑁  =  1  ∨  𝑁  =  2 ) ) ) | 
						
							| 26 |  | 3mix3 | ⊢ ( 𝑁  =  2  →  ( 𝑁  =  0  ∨  𝑁  =  1  ∨  𝑁  =  2 ) ) | 
						
							| 27 | 26 | a1d | ⊢ ( 𝑁  =  2  →  ( 𝑁  ∈  ℕ0  →  ( 𝑁  =  0  ∨  𝑁  =  1  ∨  𝑁  =  2 ) ) ) | 
						
							| 28 | 25 27 | jaoi | ⊢ ( ( 𝑁  <  2  ∨  𝑁  =  2 )  →  ( 𝑁  ∈  ℕ0  →  ( 𝑁  =  0  ∨  𝑁  =  1  ∨  𝑁  =  2 ) ) ) | 
						
							| 29 | 28 | com12 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  <  2  ∨  𝑁  =  2 )  →  ( 𝑁  =  0  ∨  𝑁  =  1  ∨  𝑁  =  2 ) ) ) | 
						
							| 30 | 4 29 | sylbid | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  ≤  2  →  ( 𝑁  =  0  ∨  𝑁  =  1  ∨  𝑁  =  2 ) ) ) | 
						
							| 31 | 30 | imp | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑁  ≤  2 )  →  ( 𝑁  =  0  ∨  𝑁  =  1  ∨  𝑁  =  2 ) ) |