| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
| 2 |
|
2re |
⊢ 2 ∈ ℝ |
| 3 |
2
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ ) |
| 4 |
1 3
|
leloed |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≤ 2 ↔ ( 𝑁 < 2 ∨ 𝑁 = 2 ) ) ) |
| 5 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 6 |
|
2z |
⊢ 2 ∈ ℤ |
| 7 |
|
zltlem1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 𝑁 < 2 ↔ 𝑁 ≤ ( 2 − 1 ) ) ) |
| 8 |
5 6 7
|
sylancl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 2 ↔ 𝑁 ≤ ( 2 − 1 ) ) ) |
| 9 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 10 |
9
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 − 1 ) = 1 ) |
| 11 |
10
|
breq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≤ ( 2 − 1 ) ↔ 𝑁 ≤ 1 ) ) |
| 12 |
8 11
|
bitrd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 2 ↔ 𝑁 ≤ 1 ) ) |
| 13 |
|
1red |
⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℝ ) |
| 14 |
1 13
|
leloed |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≤ 1 ↔ ( 𝑁 < 1 ∨ 𝑁 = 1 ) ) ) |
| 15 |
|
nn0lt10b |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 1 ↔ 𝑁 = 0 ) ) |
| 16 |
|
3mix1 |
⊢ ( 𝑁 = 0 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) |
| 17 |
15 16
|
biimtrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 18 |
17
|
com12 |
⊢ ( 𝑁 < 1 → ( 𝑁 ∈ ℕ0 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 19 |
|
3mix2 |
⊢ ( 𝑁 = 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) |
| 20 |
19
|
a1d |
⊢ ( 𝑁 = 1 → ( 𝑁 ∈ ℕ0 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 21 |
18 20
|
jaoi |
⊢ ( ( 𝑁 < 1 ∨ 𝑁 = 1 ) → ( 𝑁 ∈ ℕ0 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 22 |
21
|
com12 |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 < 1 ∨ 𝑁 = 1 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 23 |
14 22
|
sylbid |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≤ 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 24 |
12 23
|
sylbid |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 2 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 25 |
24
|
com12 |
⊢ ( 𝑁 < 2 → ( 𝑁 ∈ ℕ0 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 26 |
|
3mix3 |
⊢ ( 𝑁 = 2 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) |
| 27 |
26
|
a1d |
⊢ ( 𝑁 = 2 → ( 𝑁 ∈ ℕ0 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 28 |
25 27
|
jaoi |
⊢ ( ( 𝑁 < 2 ∨ 𝑁 = 2 ) → ( 𝑁 ∈ ℕ0 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 29 |
28
|
com12 |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 < 2 ∨ 𝑁 = 2 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 30 |
4 29
|
sylbid |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≤ 2 → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 31 |
30
|
imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2 ) ) |