| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0le2msqi.1 | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | nn0le2msqi.2 | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 3 | 1 | nn0ge0i | ⊢ 0  ≤  𝐴 | 
						
							| 4 | 2 | nn0ge0i | ⊢ 0  ≤  𝐵 | 
						
							| 5 | 1 | nn0rei | ⊢ 𝐴  ∈  ℝ | 
						
							| 6 | 2 | nn0rei | ⊢ 𝐵  ∈  ℝ | 
						
							| 7 | 5 6 | le2sqi | ⊢ ( ( 0  ≤  𝐴  ∧  0  ≤  𝐵 )  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴 ↑ 2 )  ≤  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 8 | 3 4 7 | mp2an | ⊢ ( 𝐴  ≤  𝐵  ↔  ( 𝐴 ↑ 2 )  ≤  ( 𝐵 ↑ 2 ) ) | 
						
							| 9 | 1 | nn0cni | ⊢ 𝐴  ∈  ℂ | 
						
							| 10 | 9 | sqvali | ⊢ ( 𝐴 ↑ 2 )  =  ( 𝐴  ·  𝐴 ) | 
						
							| 11 | 2 | nn0cni | ⊢ 𝐵  ∈  ℂ | 
						
							| 12 | 11 | sqvali | ⊢ ( 𝐵 ↑ 2 )  =  ( 𝐵  ·  𝐵 ) | 
						
							| 13 | 10 12 | breq12i | ⊢ ( ( 𝐴 ↑ 2 )  ≤  ( 𝐵 ↑ 2 )  ↔  ( 𝐴  ·  𝐴 )  ≤  ( 𝐵  ·  𝐵 ) ) | 
						
							| 14 | 8 13 | bitri | ⊢ ( 𝐴  ≤  𝐵  ↔  ( 𝐴  ·  𝐴 )  ≤  ( 𝐵  ·  𝐵 ) ) |