Step |
Hyp |
Ref |
Expression |
1 |
|
nn0le2msqi.1 |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
nn0le2msqi.2 |
⊢ 𝐵 ∈ ℕ0 |
3 |
1
|
nn0ge0i |
⊢ 0 ≤ 𝐴 |
4 |
2
|
nn0ge0i |
⊢ 0 ≤ 𝐵 |
5 |
1
|
nn0rei |
⊢ 𝐴 ∈ ℝ |
6 |
2
|
nn0rei |
⊢ 𝐵 ∈ ℝ |
7 |
5 6
|
le2sqi |
⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) ) |
8 |
3 4 7
|
mp2an |
⊢ ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ) |
9 |
1
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
10 |
9
|
sqvali |
⊢ ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) |
11 |
2
|
nn0cni |
⊢ 𝐵 ∈ ℂ |
12 |
11
|
sqvali |
⊢ ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) |
13 |
10 12
|
breq12i |
⊢ ( ( 𝐴 ↑ 2 ) ≤ ( 𝐵 ↑ 2 ) ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ) |
14 |
8 13
|
bitri |
⊢ ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ) |