Metamath Proof Explorer


Theorem nn0le2xi

Description: A nonnegative integer is less than or equal to twice itself. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Hypothesis nn0le2xi.1 𝑁 ∈ ℕ0
Assertion nn0le2xi 𝑁 ≤ ( 2 · 𝑁 )

Proof

Step Hyp Ref Expression
1 nn0le2xi.1 𝑁 ∈ ℕ0
2 1 nn0rei 𝑁 ∈ ℝ
3 2 1 nn0addge1i 𝑁 ≤ ( 𝑁 + 𝑁 )
4 1 nn0cni 𝑁 ∈ ℂ
5 4 2timesi ( 2 · 𝑁 ) = ( 𝑁 + 𝑁 )
6 3 5 breqtrri 𝑁 ≤ ( 2 · 𝑁 )