| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 | ⊢ ( 𝐴  ∈  ℕ0  ↔  ( 𝐴  ∈  ℕ  ∨  𝐴  =  0 ) ) | 
						
							| 2 |  | nnge1 | ⊢ ( 𝐵  ∈  ℕ  →  1  ≤  𝐵 ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  1  ≤  𝐵 ) | 
						
							| 4 |  | nnrp | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ+ ) | 
						
							| 5 |  | nnledivrp | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℝ+ )  →  ( 1  ≤  𝐵  ↔  ( 𝐴  /  𝐵 )  ≤  𝐴 ) ) | 
						
							| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 1  ≤  𝐵  ↔  ( 𝐴  /  𝐵 )  ≤  𝐴 ) ) | 
						
							| 7 | 3 6 | mpbid | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  /  𝐵 )  ≤  𝐴 ) | 
						
							| 8 | 7 | ex | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐵  ∈  ℕ  →  ( 𝐴  /  𝐵 )  ≤  𝐴 ) ) | 
						
							| 9 |  | nncn | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℂ ) | 
						
							| 10 |  | nnne0 | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ≠  0 ) | 
						
							| 11 | 9 10 | jca | ⊢ ( 𝐵  ∈  ℕ  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝐴  =  0  ∧  𝐵  ∈  ℕ )  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) ) | 
						
							| 13 |  | div0 | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( 0  /  𝐵 )  =  0 ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝐴  =  0  ∧  𝐵  ∈  ℕ )  →  ( 0  /  𝐵 )  =  0 ) | 
						
							| 15 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 16 | 14 15 | eqbrtrdi | ⊢ ( ( 𝐴  =  0  ∧  𝐵  ∈  ℕ )  →  ( 0  /  𝐵 )  ≤  0 ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝐴  =  0  →  ( 𝐴  /  𝐵 )  =  ( 0  /  𝐵 ) ) | 
						
							| 18 |  | id | ⊢ ( 𝐴  =  0  →  𝐴  =  0 ) | 
						
							| 19 | 17 18 | breq12d | ⊢ ( 𝐴  =  0  →  ( ( 𝐴  /  𝐵 )  ≤  𝐴  ↔  ( 0  /  𝐵 )  ≤  0 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝐴  =  0  ∧  𝐵  ∈  ℕ )  →  ( ( 𝐴  /  𝐵 )  ≤  𝐴  ↔  ( 0  /  𝐵 )  ≤  0 ) ) | 
						
							| 21 | 16 20 | mpbird | ⊢ ( ( 𝐴  =  0  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  /  𝐵 )  ≤  𝐴 ) | 
						
							| 22 | 21 | ex | ⊢ ( 𝐴  =  0  →  ( 𝐵  ∈  ℕ  →  ( 𝐴  /  𝐵 )  ≤  𝐴 ) ) | 
						
							| 23 | 8 22 | jaoi | ⊢ ( ( 𝐴  ∈  ℕ  ∨  𝐴  =  0 )  →  ( 𝐵  ∈  ℕ  →  ( 𝐴  /  𝐵 )  ≤  𝐴 ) ) | 
						
							| 24 | 1 23 | sylbi | ⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐵  ∈  ℕ  →  ( 𝐴  /  𝐵 )  ≤  𝐴 ) ) | 
						
							| 25 | 24 | imp | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  /  𝐵 )  ≤  𝐴 ) |