Metamath Proof Explorer
Description: 'Less than or equal to' implies 'less than or equal to twice' for
nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002)
|
|
Ref |
Expression |
|
Hypotheses |
nn0lele2xi.1 |
⊢ 𝑀 ∈ ℕ0 |
|
|
nn0lele2xi.2 |
⊢ 𝑁 ∈ ℕ0 |
|
Assertion |
nn0lele2xi |
⊢ ( 𝑁 ≤ 𝑀 → 𝑁 ≤ ( 2 · 𝑀 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0lele2xi.1 |
⊢ 𝑀 ∈ ℕ0 |
| 2 |
|
nn0lele2xi.2 |
⊢ 𝑁 ∈ ℕ0 |
| 3 |
1
|
nn0le2xi |
⊢ 𝑀 ≤ ( 2 · 𝑀 ) |
| 4 |
2
|
nn0rei |
⊢ 𝑁 ∈ ℝ |
| 5 |
1
|
nn0rei |
⊢ 𝑀 ∈ ℝ |
| 6 |
|
2re |
⊢ 2 ∈ ℝ |
| 7 |
6 5
|
remulcli |
⊢ ( 2 · 𝑀 ) ∈ ℝ |
| 8 |
4 5 7
|
letri |
⊢ ( ( 𝑁 ≤ 𝑀 ∧ 𝑀 ≤ ( 2 · 𝑀 ) ) → 𝑁 ≤ ( 2 · 𝑀 ) ) |
| 9 |
3 8
|
mpan2 |
⊢ ( 𝑁 ≤ 𝑀 → 𝑁 ≤ ( 2 · 𝑀 ) ) |