Metamath Proof Explorer
		
		
		
		Description:  Nonnegative integer ordering relation.  (Contributed by NM, 21-Jun-2005)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | nn0lem1lt | ⊢  ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀  ≤  𝑁  ↔  ( 𝑀  −  1 )  <  𝑁 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0z | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 3 |  | zlem1lt | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ≤  𝑁  ↔  ( 𝑀  −  1 )  <  𝑁 ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀  ≤  𝑁  ↔  ( 𝑀  −  1 )  <  𝑁 ) ) |