Metamath Proof Explorer


Theorem nn0lem1lt

Description: Nonnegative integer ordering relation. (Contributed by NM, 21-Jun-2005)

Ref Expression
Assertion nn0lem1lt ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0 ) → ( 𝑀𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) )

Proof

Step Hyp Ref Expression
1 nn0z ( 𝑀 ∈ ℕ0𝑀 ∈ ℤ )
2 nn0z ( 𝑁 ∈ ℕ0𝑁 ∈ ℤ )
3 zlem1lt ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) )
4 1 2 3 syl2an ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0 ) → ( 𝑀𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) )