| Step |
Hyp |
Ref |
Expression |
| 1 |
|
olc |
⊢ ( 𝑁 = 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
| 2 |
1
|
a1d |
⊢ ( 𝑁 = 1 → ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 < 2 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 3 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 4 |
|
2z |
⊢ 2 ∈ ℤ |
| 5 |
|
zltlem1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 𝑁 < 2 ↔ 𝑁 ≤ ( 2 − 1 ) ) ) |
| 6 |
3 4 5
|
sylancl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 2 ↔ 𝑁 ≤ ( 2 − 1 ) ) ) |
| 7 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 8 |
7
|
breq2i |
⊢ ( 𝑁 ≤ ( 2 − 1 ) ↔ 𝑁 ≤ 1 ) |
| 9 |
6 8
|
bitrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 2 ↔ 𝑁 ≤ 1 ) ) |
| 10 |
|
necom |
⊢ ( 𝑁 ≠ 1 ↔ 1 ≠ 𝑁 ) |
| 11 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
| 12 |
|
1re |
⊢ 1 ∈ ℝ |
| 13 |
|
ltlen |
⊢ ( ( 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑁 < 1 ↔ ( 𝑁 ≤ 1 ∧ 1 ≠ 𝑁 ) ) ) |
| 14 |
11 12 13
|
sylancl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 1 ↔ ( 𝑁 ≤ 1 ∧ 1 ≠ 𝑁 ) ) ) |
| 15 |
|
nn0lt10b |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 1 ↔ 𝑁 = 0 ) ) |
| 16 |
15
|
biimpa |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 < 1 ) → 𝑁 = 0 ) |
| 17 |
16
|
orcd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 < 1 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
| 18 |
17
|
ex |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 19 |
14 18
|
sylbird |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 ≤ 1 ∧ 1 ≠ 𝑁 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 20 |
19
|
expd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≤ 1 → ( 1 ≠ 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) ) |
| 21 |
10 20
|
syl7bi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≤ 1 → ( 𝑁 ≠ 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) ) |
| 22 |
9 21
|
sylbid |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < 2 → ( 𝑁 ≠ 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) ) |
| 23 |
22
|
imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 < 2 ) → ( 𝑁 ≠ 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 24 |
23
|
com12 |
⊢ ( 𝑁 ≠ 1 → ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 < 2 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 25 |
2 24
|
pm2.61ine |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 < 2 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |