Metamath Proof Explorer


Theorem nn0mulcli

Description: Closure of multiplication of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Hypotheses nn0addcli.1 𝑀 ∈ ℕ0
nn0addcli.2 𝑁 ∈ ℕ0
Assertion nn0mulcli ( 𝑀 · 𝑁 ) ∈ ℕ0

Proof

Step Hyp Ref Expression
1 nn0addcli.1 𝑀 ∈ ℕ0
2 nn0addcli.2 𝑁 ∈ ℕ0
3 nn0mulcl ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0 ) → ( 𝑀 · 𝑁 ) ∈ ℕ0 )
4 1 2 3 mp2an ( 𝑀 · 𝑁 ) ∈ ℕ0