Metamath Proof Explorer


Theorem nn0n0n1ge2b

Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018)

Ref Expression
Assertion nn0n0n1ge2b ( 𝑁 ∈ ℕ0 → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 nn0n0n1ge2 ( ( 𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → 2 ≤ 𝑁 )
2 1 3expib ( 𝑁 ∈ ℕ0 → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → 2 ≤ 𝑁 ) )
3 ianor ( ¬ ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ ( ¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1 ) )
4 nne ( ¬ 𝑁 ≠ 0 ↔ 𝑁 = 0 )
5 nne ( ¬ 𝑁 ≠ 1 ↔ 𝑁 = 1 )
6 4 5 orbi12i ( ( ¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1 ) ↔ ( 𝑁 = 0 ∨ 𝑁 = 1 ) )
7 3 6 bitri ( ¬ ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ ( 𝑁 = 0 ∨ 𝑁 = 1 ) )
8 2pos 0 < 2
9 breq1 ( 𝑁 = 0 → ( 𝑁 < 2 ↔ 0 < 2 ) )
10 8 9 mpbiri ( 𝑁 = 0 → 𝑁 < 2 )
11 10 a1d ( 𝑁 = 0 → ( 𝑁 ∈ ℕ0𝑁 < 2 ) )
12 1lt2 1 < 2
13 breq1 ( 𝑁 = 1 → ( 𝑁 < 2 ↔ 1 < 2 ) )
14 12 13 mpbiri ( 𝑁 = 1 → 𝑁 < 2 )
15 14 a1d ( 𝑁 = 1 → ( 𝑁 ∈ ℕ0𝑁 < 2 ) )
16 11 15 jaoi ( ( 𝑁 = 0 ∨ 𝑁 = 1 ) → ( 𝑁 ∈ ℕ0𝑁 < 2 ) )
17 16 impcom ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) → 𝑁 < 2 )
18 nn0re ( 𝑁 ∈ ℕ0𝑁 ∈ ℝ )
19 2re 2 ∈ ℝ
20 18 19 jctir ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ ) )
21 20 adantr ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) → ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ ) )
22 ltnle ( ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ ) → ( 𝑁 < 2 ↔ ¬ 2 ≤ 𝑁 ) )
23 21 22 syl ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) → ( 𝑁 < 2 ↔ ¬ 2 ≤ 𝑁 ) )
24 17 23 mpbid ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) → ¬ 2 ≤ 𝑁 )
25 24 ex ( 𝑁 ∈ ℕ0 → ( ( 𝑁 = 0 ∨ 𝑁 = 1 ) → ¬ 2 ≤ 𝑁 ) )
26 7 25 syl5bi ( 𝑁 ∈ ℕ0 → ( ¬ ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → ¬ 2 ≤ 𝑁 ) )
27 2 26 impcon4bid ( 𝑁 ∈ ℕ0 → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) )