Step |
Hyp |
Ref |
Expression |
1 |
|
nn0n0n1ge2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → 2 ≤ 𝑁 ) |
2 |
1
|
3expib |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → 2 ≤ 𝑁 ) ) |
3 |
|
ianor |
⊢ ( ¬ ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ ( ¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1 ) ) |
4 |
|
nne |
⊢ ( ¬ 𝑁 ≠ 0 ↔ 𝑁 = 0 ) |
5 |
|
nne |
⊢ ( ¬ 𝑁 ≠ 1 ↔ 𝑁 = 1 ) |
6 |
4 5
|
orbi12i |
⊢ ( ( ¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1 ) ↔ ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
7 |
3 6
|
bitri |
⊢ ( ¬ ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
8 |
|
2pos |
⊢ 0 < 2 |
9 |
|
breq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 < 2 ↔ 0 < 2 ) ) |
10 |
8 9
|
mpbiri |
⊢ ( 𝑁 = 0 → 𝑁 < 2 ) |
11 |
10
|
a1d |
⊢ ( 𝑁 = 0 → ( 𝑁 ∈ ℕ0 → 𝑁 < 2 ) ) |
12 |
|
1lt2 |
⊢ 1 < 2 |
13 |
|
breq1 |
⊢ ( 𝑁 = 1 → ( 𝑁 < 2 ↔ 1 < 2 ) ) |
14 |
12 13
|
mpbiri |
⊢ ( 𝑁 = 1 → 𝑁 < 2 ) |
15 |
14
|
a1d |
⊢ ( 𝑁 = 1 → ( 𝑁 ∈ ℕ0 → 𝑁 < 2 ) ) |
16 |
11 15
|
jaoi |
⊢ ( ( 𝑁 = 0 ∨ 𝑁 = 1 ) → ( 𝑁 ∈ ℕ0 → 𝑁 < 2 ) ) |
17 |
16
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) → 𝑁 < 2 ) |
18 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
19 |
|
2re |
⊢ 2 ∈ ℝ |
20 |
18 19
|
jctir |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) → ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ ) ) |
22 |
|
ltnle |
⊢ ( ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ ) → ( 𝑁 < 2 ↔ ¬ 2 ≤ 𝑁 ) ) |
23 |
21 22
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) → ( 𝑁 < 2 ↔ ¬ 2 ≤ 𝑁 ) ) |
24 |
17 23
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) → ¬ 2 ≤ 𝑁 ) |
25 |
24
|
ex |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 = 0 ∨ 𝑁 = 1 ) → ¬ 2 ≤ 𝑁 ) ) |
26 |
7 25
|
syl5bi |
⊢ ( 𝑁 ∈ ℕ0 → ( ¬ ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → ¬ 2 ≤ 𝑁 ) ) |
27 |
2 26
|
impcon4bid |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) ) |