Metamath Proof Explorer


Theorem nn0negz

Description: The negative of a nonnegative integer is an integer. (Contributed by NM, 9-May-2004)

Ref Expression
Assertion nn0negz ( 𝑁 ∈ ℕ0 → - 𝑁 ∈ ℤ )

Proof

Step Hyp Ref Expression
1 nn0z ( 𝑁 ∈ ℕ0𝑁 ∈ ℤ )
2 znegcl ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ )
3 1 2 syl ( 𝑁 ∈ ℕ0 → - 𝑁 ∈ ℤ )