Metamath Proof Explorer


Theorem nn0negzi

Description: The negative of a nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypothesis nn0negzi.1 𝑁 ∈ ℕ0
Assertion nn0negzi - 𝑁 ∈ ℤ

Proof

Step Hyp Ref Expression
1 nn0negzi.1 𝑁 ∈ ℕ0
2 nn0negz ( 𝑁 ∈ ℕ0 → - 𝑁 ∈ ℤ )
3 1 2 ax-mp - 𝑁 ∈ ℤ