Metamath Proof Explorer


Theorem nn0nnaddcl

Description: A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005)

Ref Expression
Assertion nn0nnaddcl ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ ) → ( 𝑀 + 𝑁 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 nncn ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ )
2 nn0cn ( 𝑀 ∈ ℕ0𝑀 ∈ ℂ )
3 addcom ( ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( 𝑁 + 𝑀 ) = ( 𝑀 + 𝑁 ) )
4 1 2 3 syl2an ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁 + 𝑀 ) = ( 𝑀 + 𝑁 ) )
5 nnnn0addcl ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁 + 𝑀 ) ∈ ℕ )
6 4 5 eqeltrrd ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℕ )
7 6 ancoms ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ ) → ( 𝑀 + 𝑁 ) ∈ ℕ )