| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0o1gt2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) | 
						
							| 2 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 3 | 2 | oveq1i | ⊢ ( ( 1  −  1 )  /  2 )  =  ( 0  /  2 ) | 
						
							| 4 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 5 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 6 | 4 5 | div0i | ⊢ ( 0  /  2 )  =  0 | 
						
							| 7 | 3 6 | eqtri | ⊢ ( ( 1  −  1 )  /  2 )  =  0 | 
						
							| 8 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 9 | 7 8 | eqeltri | ⊢ ( ( 1  −  1 )  /  2 )  ∈  ℕ0 | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑁  =  1  →  ( 𝑁  −  1 )  =  ( 1  −  1 ) ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝑁  =  1  →  ( ( 𝑁  −  1 )  /  2 )  =  ( ( 1  −  1 )  /  2 ) ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( 𝑁  =  1  →  ( ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0  ↔  ( ( 1  −  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝑁  =  1  ∧  ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 ) )  →  ( ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0  ↔  ( ( 1  −  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 14 | 9 13 | mpbiri | ⊢ ( ( 𝑁  =  1  ∧  ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 ) )  →  ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 15 | 14 | ex | ⊢ ( 𝑁  =  1  →  ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 16 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 17 | 16 | a1i | ⊢ ( ( 2  <  𝑁  ∧  ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 ) )  →  2  ∈  ℤ ) | 
						
							| 18 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 19 | 18 | ad2antrl | ⊢ ( ( 2  <  𝑁  ∧  ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 20 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 21 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 22 |  | ltle | ⊢ ( ( 2  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 2  <  𝑁  →  2  ≤  𝑁 ) ) | 
						
							| 23 | 20 21 22 | sylancr | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2  <  𝑁  →  2  ≤  𝑁 ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( 2  <  𝑁  →  2  ≤  𝑁 ) ) | 
						
							| 25 | 24 | impcom | ⊢ ( ( 2  <  𝑁  ∧  ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 ) )  →  2  ≤  𝑁 ) | 
						
							| 26 |  | eluz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  2  ≤  𝑁 ) ) | 
						
							| 27 | 17 19 25 26 | syl3anbrc | ⊢ ( ( 2  <  𝑁  ∧  ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 28 |  | simprr | ⊢ ( ( 2  <  𝑁  ∧  ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 ) )  →  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 29 | 27 28 | jca | ⊢ ( ( 2  <  𝑁  ∧  ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 ) )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 30 |  | nno | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 31 |  | nnnn0 | ⊢ ( ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ  →  ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 32 | 29 30 31 | 3syl | ⊢ ( ( 2  <  𝑁  ∧  ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 ) )  →  ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 33 | 32 | ex | ⊢ ( 2  <  𝑁  →  ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 34 | 15 33 | jaoi | ⊢ ( ( 𝑁  =  1  ∨  2  <  𝑁 )  →  ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 35 | 1 34 | mpcom | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0 ) |