| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 2 |  | elnnnn0c | ⊢ ( 𝑁  ∈  ℕ  ↔  ( 𝑁  ∈  ℕ0  ∧  1  ≤  𝑁 ) ) | 
						
							| 3 |  | 1red | ⊢ ( 𝑁  ∈  ℕ0  →  1  ∈  ℝ ) | 
						
							| 4 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 5 | 3 4 | leloed | ⊢ ( 𝑁  ∈  ℕ0  →  ( 1  ≤  𝑁  ↔  ( 1  <  𝑁  ∨  1  =  𝑁 ) ) ) | 
						
							| 6 |  | 1zzd | ⊢ ( 𝑁  ∈  ℕ0  →  1  ∈  ℤ ) | 
						
							| 7 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 8 |  | zltp1le | ⊢ ( ( 1  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 1  <  𝑁  ↔  ( 1  +  1 )  ≤  𝑁 ) ) | 
						
							| 9 | 6 7 8 | syl2anc | ⊢ ( 𝑁  ∈  ℕ0  →  ( 1  <  𝑁  ↔  ( 1  +  1 )  ≤  𝑁 ) ) | 
						
							| 10 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 11 | 10 | breq1i | ⊢ ( ( 1  +  1 )  ≤  𝑁  ↔  2  ≤  𝑁 ) | 
						
							| 12 | 11 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 1  +  1 )  ≤  𝑁  ↔  2  ≤  𝑁 ) ) | 
						
							| 13 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 14 | 13 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 15 | 14 4 | leloed | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2  ≤  𝑁  ↔  ( 2  <  𝑁  ∨  2  =  𝑁 ) ) ) | 
						
							| 16 | 9 12 15 | 3bitrd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 1  <  𝑁  ↔  ( 2  <  𝑁  ∨  2  =  𝑁 ) ) ) | 
						
							| 17 |  | olc | ⊢ ( 2  <  𝑁  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) | 
						
							| 18 | 17 | 2a1d | ⊢ ( 2  <  𝑁  →  ( 𝑁  ∈  ℕ0  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) ) | 
						
							| 19 |  | oveq1 | ⊢ ( 𝑁  =  2  →  ( 𝑁  +  1 )  =  ( 2  +  1 ) ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( 𝑁  =  2  →  ( ( 𝑁  +  1 )  /  2 )  =  ( ( 2  +  1 )  /  2 ) ) | 
						
							| 21 | 20 | eqcoms | ⊢ ( 2  =  𝑁  →  ( ( 𝑁  +  1 )  /  2 )  =  ( ( 2  +  1 )  /  2 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  2  =  𝑁 )  →  ( ( 𝑁  +  1 )  /  2 )  =  ( ( 2  +  1 )  /  2 ) ) | 
						
							| 23 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 24 | 23 | oveq1i | ⊢ ( ( 2  +  1 )  /  2 )  =  ( 3  /  2 ) | 
						
							| 25 | 22 24 | eqtrdi | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  2  =  𝑁 )  →  ( ( 𝑁  +  1 )  /  2 )  =  ( 3  /  2 ) ) | 
						
							| 26 | 25 | eleq1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  2  =  𝑁 )  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  ↔  ( 3  /  2 )  ∈  ℕ0 ) ) | 
						
							| 27 |  | 3halfnz | ⊢ ¬  ( 3  /  2 )  ∈  ℤ | 
						
							| 28 |  | nn0z | ⊢ ( ( 3  /  2 )  ∈  ℕ0  →  ( 3  /  2 )  ∈  ℤ ) | 
						
							| 29 | 28 | pm2.24d | ⊢ ( ( 3  /  2 )  ∈  ℕ0  →  ( ¬  ( 3  /  2 )  ∈  ℤ  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 30 | 27 29 | mpi | ⊢ ( ( 3  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) | 
						
							| 31 | 26 30 | biimtrdi | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  2  =  𝑁 )  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 32 | 31 | expcom | ⊢ ( 2  =  𝑁  →  ( 𝑁  ∈  ℕ0  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) ) | 
						
							| 33 | 18 32 | jaoi | ⊢ ( ( 2  <  𝑁  ∨  2  =  𝑁 )  →  ( 𝑁  ∈  ℕ0  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) ) | 
						
							| 34 | 33 | com12 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 2  <  𝑁  ∨  2  =  𝑁 )  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) ) | 
						
							| 35 | 16 34 | sylbid | ⊢ ( 𝑁  ∈  ℕ0  →  ( 1  <  𝑁  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) ) | 
						
							| 36 | 35 | com12 | ⊢ ( 1  <  𝑁  →  ( 𝑁  ∈  ℕ0  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) ) | 
						
							| 37 |  | orc | ⊢ ( 𝑁  =  1  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) | 
						
							| 38 | 37 | eqcoms | ⊢ ( 1  =  𝑁  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) | 
						
							| 39 | 38 | 2a1d | ⊢ ( 1  =  𝑁  →  ( 𝑁  ∈  ℕ0  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) ) | 
						
							| 40 | 36 39 | jaoi | ⊢ ( ( 1  <  𝑁  ∨  1  =  𝑁 )  →  ( 𝑁  ∈  ℕ0  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) ) | 
						
							| 41 | 40 | com12 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 1  <  𝑁  ∨  1  =  𝑁 )  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) ) | 
						
							| 42 | 5 41 | sylbid | ⊢ ( 𝑁  ∈  ℕ0  →  ( 1  ≤  𝑁  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) ) | 
						
							| 43 | 42 | imp | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  1  ≤  𝑁 )  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 44 | 2 43 | sylbi | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 45 |  | oveq1 | ⊢ ( 𝑁  =  0  →  ( 𝑁  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 46 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 47 | 45 46 | eqtrdi | ⊢ ( 𝑁  =  0  →  ( 𝑁  +  1 )  =  1 ) | 
						
							| 48 | 47 | oveq1d | ⊢ ( 𝑁  =  0  →  ( ( 𝑁  +  1 )  /  2 )  =  ( 1  /  2 ) ) | 
						
							| 49 | 48 | eleq1d | ⊢ ( 𝑁  =  0  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  ↔  ( 1  /  2 )  ∈  ℕ0 ) ) | 
						
							| 50 |  | halfnz | ⊢ ¬  ( 1  /  2 )  ∈  ℤ | 
						
							| 51 |  | nn0z | ⊢ ( ( 1  /  2 )  ∈  ℕ0  →  ( 1  /  2 )  ∈  ℤ ) | 
						
							| 52 | 51 | pm2.24d | ⊢ ( ( 1  /  2 )  ∈  ℕ0  →  ( ¬  ( 1  /  2 )  ∈  ℤ  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 53 | 50 52 | mpi | ⊢ ( ( 1  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) | 
						
							| 54 | 49 53 | biimtrdi | ⊢ ( 𝑁  =  0  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 55 | 44 54 | jaoi | ⊢ ( ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 )  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 56 | 1 55 | sylbi | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 57 | 56 | imp | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) |