| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 2 |  | oddp1d2 | ⊢ ( 𝑁  ∈  ℤ  →  ( ¬  2  ∥  𝑁  ↔  ( ( 𝑁  +  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ¬  2  ∥  𝑁  ↔  ( ( 𝑁  +  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 4 |  | peano2nn0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 5 | 4 | nn0red | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 6 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℝ+ ) | 
						
							| 8 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 9 |  | 1red | ⊢ ( 𝑁  ∈  ℕ0  →  1  ∈  ℝ ) | 
						
							| 10 |  | nn0ge0 | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  𝑁 ) | 
						
							| 11 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 12 | 11 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  1 ) | 
						
							| 13 | 8 9 10 12 | addge0d | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  ( 𝑁  +  1 ) ) | 
						
							| 14 | 5 7 13 | divge0d | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  ( ( 𝑁  +  1 )  /  2 ) ) | 
						
							| 15 | 14 | anim1ci | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℤ )  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℤ  ∧  0  ≤  ( ( 𝑁  +  1 )  /  2 ) ) ) | 
						
							| 16 |  | elnn0z | ⊢ ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  ↔  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℤ  ∧  0  ≤  ( ( 𝑁  +  1 )  /  2 ) ) ) | 
						
							| 17 | 15 16 | sylibr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℤ )  →  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 18 | 17 | ex | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℤ  →  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 19 |  | nn0z | ⊢ ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( ( 𝑁  +  1 )  /  2 )  ∈  ℤ ) | 
						
							| 20 | 18 19 | impbid1 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℤ  ↔  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 21 |  | nn0ob | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  ↔  ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 22 | 3 20 21 | 3bitrd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ¬  2  ∥  𝑁  ↔  ( ( 𝑁  −  1 )  /  2 )  ∈  ℕ0 ) ) |