Metamath Proof Explorer


Theorem nn0onn

Description: An odd nonnegative integer is positive. (Contributed by Steven Nguyen, 25-Mar-2023)

Ref Expression
Assertion nn0onn ( ( 𝑁 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑁 ) → 𝑁 ∈ ℕ )

Proof

Step Hyp Ref Expression
1 z0even 2 ∥ 0
2 breq2 ( 𝑁 = 0 → ( 2 ∥ 𝑁 ↔ 2 ∥ 0 ) )
3 1 2 mpbiri ( 𝑁 = 0 → 2 ∥ 𝑁 )
4 3 necon3bi ( ¬ 2 ∥ 𝑁𝑁 ≠ 0 )
5 4 anim2i ( ( 𝑁 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑁 ) → ( 𝑁 ∈ ℕ0𝑁 ≠ 0 ) )
6 elnnne0 ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0𝑁 ≠ 0 ) )
7 5 6 sylibr ( ( 𝑁 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑁 ) → 𝑁 ∈ ℕ )