Description: An odd nonnegative integer is positive. (Contributed by Steven Nguyen, 25-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0onn | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑁 ) → 𝑁 ∈ ℕ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | z0even | ⊢ 2 ∥ 0 | |
| 2 | breq2 | ⊢ ( 𝑁 = 0 → ( 2 ∥ 𝑁 ↔ 2 ∥ 0 ) ) | |
| 3 | 1 2 | mpbiri | ⊢ ( 𝑁 = 0 → 2 ∥ 𝑁 ) | 
| 4 | 3 | necon3bi | ⊢ ( ¬ 2 ∥ 𝑁 → 𝑁 ≠ 0 ) | 
| 5 | 4 | anim2i | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑁 ) → ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) | 
| 6 | elnnne0 | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) | |
| 7 | 5 6 | sylibr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑁 ) → 𝑁 ∈ ℕ ) |