Step |
Hyp |
Ref |
Expression |
1 |
|
nn0opth.1 |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
nn0opth.2 |
⊢ 𝐵 ∈ ℕ0 |
3 |
|
nn0opth.3 |
⊢ 𝐶 ∈ ℕ0 |
4 |
|
nn0opth.4 |
⊢ 𝐷 ∈ ℕ0 |
5 |
1
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
6 |
2
|
nn0cni |
⊢ 𝐵 ∈ ℂ |
7 |
5 6
|
addcli |
⊢ ( 𝐴 + 𝐵 ) ∈ ℂ |
8 |
7
|
sqvali |
⊢ ( ( 𝐴 + 𝐵 ) ↑ 2 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) |
9 |
8
|
oveq1i |
⊢ ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) + 𝐵 ) = ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) |
10 |
3
|
nn0cni |
⊢ 𝐶 ∈ ℂ |
11 |
4
|
nn0cni |
⊢ 𝐷 ∈ ℂ |
12 |
10 11
|
addcli |
⊢ ( 𝐶 + 𝐷 ) ∈ ℂ |
13 |
12
|
sqvali |
⊢ ( ( 𝐶 + 𝐷 ) ↑ 2 ) = ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) |
14 |
13
|
oveq1i |
⊢ ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) |
15 |
9 14
|
eqeq12i |
⊢ ( ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) ↔ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
16 |
1 2 3 4
|
nn0opthi |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
17 |
15 16
|
bitri |
⊢ ( ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |