| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0opth.1 |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
nn0opth.2 |
⊢ 𝐵 ∈ ℕ0 |
| 3 |
|
nn0opth.3 |
⊢ 𝐶 ∈ ℕ0 |
| 4 |
|
nn0opth.4 |
⊢ 𝐷 ∈ ℕ0 |
| 5 |
1
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
| 6 |
2
|
nn0cni |
⊢ 𝐵 ∈ ℂ |
| 7 |
5 6
|
addcli |
⊢ ( 𝐴 + 𝐵 ) ∈ ℂ |
| 8 |
7
|
sqvali |
⊢ ( ( 𝐴 + 𝐵 ) ↑ 2 ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) |
| 9 |
8
|
oveq1i |
⊢ ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) + 𝐵 ) = ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) |
| 10 |
3
|
nn0cni |
⊢ 𝐶 ∈ ℂ |
| 11 |
4
|
nn0cni |
⊢ 𝐷 ∈ ℂ |
| 12 |
10 11
|
addcli |
⊢ ( 𝐶 + 𝐷 ) ∈ ℂ |
| 13 |
12
|
sqvali |
⊢ ( ( 𝐶 + 𝐷 ) ↑ 2 ) = ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) |
| 14 |
13
|
oveq1i |
⊢ ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) |
| 15 |
9 14
|
eqeq12i |
⊢ ( ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) ↔ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
| 16 |
1 2 3 4
|
nn0opthi |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 17 |
15 16
|
bitri |
⊢ ( ( ( ( 𝐴 + 𝐵 ) ↑ 2 ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) ↑ 2 ) + 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |