| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0opth.1 |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
nn0opth.2 |
⊢ 𝐵 ∈ ℕ0 |
| 3 |
|
nn0opth.3 |
⊢ 𝐶 ∈ ℕ0 |
| 4 |
|
nn0opth.4 |
⊢ 𝐷 ∈ ℕ0 |
| 5 |
1 2
|
nn0addcli |
⊢ ( 𝐴 + 𝐵 ) ∈ ℕ0 |
| 6 |
5
|
nn0rei |
⊢ ( 𝐴 + 𝐵 ) ∈ ℝ |
| 7 |
3 4
|
nn0addcli |
⊢ ( 𝐶 + 𝐷 ) ∈ ℕ0 |
| 8 |
7
|
nn0rei |
⊢ ( 𝐶 + 𝐷 ) ∈ ℝ |
| 9 |
6 8
|
lttri2i |
⊢ ( ( 𝐴 + 𝐵 ) ≠ ( 𝐶 + 𝐷 ) ↔ ( ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ∨ ( 𝐶 + 𝐷 ) < ( 𝐴 + 𝐵 ) ) ) |
| 10 |
1 2 7 4
|
nn0opthlem2 |
⊢ ( ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) → ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ≠ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ) |
| 11 |
10
|
necomd |
⊢ ( ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ≠ ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
| 12 |
3 4 5 2
|
nn0opthlem2 |
⊢ ( ( 𝐶 + 𝐷 ) < ( 𝐴 + 𝐵 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ≠ ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
| 13 |
11 12
|
jaoi |
⊢ ( ( ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ∨ ( 𝐶 + 𝐷 ) < ( 𝐴 + 𝐵 ) ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ≠ ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
| 14 |
9 13
|
sylbi |
⊢ ( ( 𝐴 + 𝐵 ) ≠ ( 𝐶 + 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ≠ ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
| 15 |
14
|
necon4i |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) |
| 16 |
|
id |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
| 17 |
15 15
|
oveq12d |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) = ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) ) |
| 18 |
17
|
oveq1d |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐷 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
| 19 |
16 18
|
eqtr4d |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐷 ) ) |
| 20 |
5
|
nn0cni |
⊢ ( 𝐴 + 𝐵 ) ∈ ℂ |
| 21 |
20 20
|
mulcli |
⊢ ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) ∈ ℂ |
| 22 |
2
|
nn0cni |
⊢ 𝐵 ∈ ℂ |
| 23 |
4
|
nn0cni |
⊢ 𝐷 ∈ ℂ |
| 24 |
21 22 23
|
addcani |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐷 ) ↔ 𝐵 = 𝐷 ) |
| 25 |
19 24
|
sylib |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → 𝐵 = 𝐷 ) |
| 26 |
25
|
oveq2d |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( 𝐶 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) |
| 27 |
15 26
|
eqtr4d |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐵 ) ) |
| 28 |
1
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
| 29 |
3
|
nn0cni |
⊢ 𝐶 ∈ ℂ |
| 30 |
28 29 22
|
addcan2i |
⊢ ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐵 ) ↔ 𝐴 = 𝐶 ) |
| 31 |
27 30
|
sylib |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → 𝐴 = 𝐶 ) |
| 32 |
31 25
|
jca |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 33 |
|
oveq12 |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) |
| 34 |
33 33
|
oveq12d |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) = ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) ) |
| 35 |
|
simpr |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → 𝐵 = 𝐷 ) |
| 36 |
34 35
|
oveq12d |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
| 37 |
32 36
|
impbii |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |