Step |
Hyp |
Ref |
Expression |
1 |
|
nn0opth.1 |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
nn0opth.2 |
⊢ 𝐵 ∈ ℕ0 |
3 |
|
nn0opth.3 |
⊢ 𝐶 ∈ ℕ0 |
4 |
|
nn0opth.4 |
⊢ 𝐷 ∈ ℕ0 |
5 |
1 2
|
nn0addcli |
⊢ ( 𝐴 + 𝐵 ) ∈ ℕ0 |
6 |
5
|
nn0rei |
⊢ ( 𝐴 + 𝐵 ) ∈ ℝ |
7 |
3 4
|
nn0addcli |
⊢ ( 𝐶 + 𝐷 ) ∈ ℕ0 |
8 |
7
|
nn0rei |
⊢ ( 𝐶 + 𝐷 ) ∈ ℝ |
9 |
6 8
|
lttri2i |
⊢ ( ( 𝐴 + 𝐵 ) ≠ ( 𝐶 + 𝐷 ) ↔ ( ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ∨ ( 𝐶 + 𝐷 ) < ( 𝐴 + 𝐵 ) ) ) |
10 |
1 2 7 4
|
nn0opthlem2 |
⊢ ( ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) → ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ≠ ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ) |
11 |
10
|
necomd |
⊢ ( ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ≠ ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
12 |
3 4 5 2
|
nn0opthlem2 |
⊢ ( ( 𝐶 + 𝐷 ) < ( 𝐴 + 𝐵 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ≠ ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
13 |
11 12
|
jaoi |
⊢ ( ( ( 𝐴 + 𝐵 ) < ( 𝐶 + 𝐷 ) ∨ ( 𝐶 + 𝐷 ) < ( 𝐴 + 𝐵 ) ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ≠ ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
14 |
9 13
|
sylbi |
⊢ ( ( 𝐴 + 𝐵 ) ≠ ( 𝐶 + 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) ≠ ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
15 |
14
|
necon4i |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) |
16 |
|
id |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
17 |
15 15
|
oveq12d |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) = ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) ) |
18 |
17
|
oveq1d |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐷 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
19 |
16 18
|
eqtr4d |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐷 ) ) |
20 |
5
|
nn0cni |
⊢ ( 𝐴 + 𝐵 ) ∈ ℂ |
21 |
20 20
|
mulcli |
⊢ ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) ∈ ℂ |
22 |
2
|
nn0cni |
⊢ 𝐵 ∈ ℂ |
23 |
4
|
nn0cni |
⊢ 𝐷 ∈ ℂ |
24 |
21 22 23
|
addcani |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐷 ) ↔ 𝐵 = 𝐷 ) |
25 |
19 24
|
sylib |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → 𝐵 = 𝐷 ) |
26 |
25
|
oveq2d |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( 𝐶 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) |
27 |
15 26
|
eqtr4d |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐵 ) ) |
28 |
1
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
29 |
3
|
nn0cni |
⊢ 𝐶 ∈ ℂ |
30 |
28 29 22
|
addcan2i |
⊢ ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐵 ) ↔ 𝐴 = 𝐶 ) |
31 |
27 30
|
sylib |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → 𝐴 = 𝐶 ) |
32 |
31 25
|
jca |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
33 |
|
oveq12 |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) |
34 |
33 33
|
oveq12d |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) = ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) ) |
35 |
|
simpr |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → 𝐵 = 𝐷 ) |
36 |
34 35
|
oveq12d |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ) |
37 |
32 36
|
impbii |
⊢ ( ( ( ( 𝐴 + 𝐵 ) · ( 𝐴 + 𝐵 ) ) + 𝐵 ) = ( ( ( 𝐶 + 𝐷 ) · ( 𝐶 + 𝐷 ) ) + 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |