Metamath Proof Explorer


Theorem nn0pzuz

Description: The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018)

Ref Expression
Assertion nn0pzuz ( ( 𝑁 ∈ ℕ0𝑍 ∈ ℤ ) → ( 𝑁 + 𝑍 ) ∈ ( ℤ𝑍 ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝑁 ∈ ℕ0𝑍 ∈ ℤ ) → 𝑍 ∈ ℤ )
2 nn0z ( 𝑁 ∈ ℕ0𝑁 ∈ ℤ )
3 zaddcl ( ( 𝑁 ∈ ℤ ∧ 𝑍 ∈ ℤ ) → ( 𝑁 + 𝑍 ) ∈ ℤ )
4 2 3 sylan ( ( 𝑁 ∈ ℕ0𝑍 ∈ ℤ ) → ( 𝑁 + 𝑍 ) ∈ ℤ )
5 zre ( 𝑍 ∈ ℤ → 𝑍 ∈ ℝ )
6 nn0addge2 ( ( 𝑍 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → 𝑍 ≤ ( 𝑁 + 𝑍 ) )
7 5 6 sylan ( ( 𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝑍 ≤ ( 𝑁 + 𝑍 ) )
8 7 ancoms ( ( 𝑁 ∈ ℕ0𝑍 ∈ ℤ ) → 𝑍 ≤ ( 𝑁 + 𝑍 ) )
9 eluz2 ( ( 𝑁 + 𝑍 ) ∈ ( ℤ𝑍 ) ↔ ( 𝑍 ∈ ℤ ∧ ( 𝑁 + 𝑍 ) ∈ ℤ ∧ 𝑍 ≤ ( 𝑁 + 𝑍 ) ) )
10 1 4 8 9 syl3anbrc ( ( 𝑁 ∈ ℕ0𝑍 ∈ ℤ ) → ( 𝑁 + 𝑍 ) ∈ ( ℤ𝑍 ) )